Crystal level continuum modelling of phase transformations: the α ↔ ϵ transformation in iron

We present a crystal level model for thermo-mechanical deformation with phase transformation capabilities. The model is formulated to allow for large pressures (on the order of the elastic moduli) and makes use of a multiplicative decomposition of the deformation gradient. Elastic and thermal lattice distortions are combined into a single lattice stretch to allow the model to be used in conjunction with general equation of state relationships. Phase transformations change the mass fractions of the material constituents. The driving force for phase transformations includes terms arising from mechanical work, the temperature dependent chemical free energy change on transformation, and the interaction energy among the constituents. Deformation results from both these phase transformations and elasto-viscoplastic deformation of the constituents themselves. Simulation results are given for the α to phase transformation in iron. Results include simulations of shock-induced transformation in single crystals and of compression of polycrystals. Results are compared with available experimental data.

[1]  P. Dawson,et al.  On the spatial arrangement of lattice orientations in hot-rolled multiphase titanium , 2001 .

[2]  G. S. Ansell,et al.  The influence of austenite strength upon the austenite-martensite transformation in alloy steels , 1970 .

[3]  Yongmei M Jin,et al.  Three-dimensional phase field model of proper martensitic transformation , 2001 .

[4]  A. Khachaturyan,et al.  Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: simulation of ζ′2 martensite in AuCd alloys , 2001 .

[5]  Yuri Estrin,et al.  2 – Dislocation-Density–Related Constitutive Modeling , 1996 .

[6]  T Prakash G. Thamburaja,et al.  Polycrystalline shape-memory materials: effect of crystallographic texture , 2001 .

[7]  W. C. Leslie Microstructural Effects of High Strain Rate Deformation , 1973 .

[8]  R. Jeanloz,et al.  Hysteresis in the high pressure transformation of bcc‐ to hcp‐iron , 1991 .

[9]  R. Jeanloz,et al.  The Melting Curve of Iron to 250 Gigapascals: A Constraint on the Temperature at Earth's Center , 1987, Science.

[10]  G. B. Olson,et al.  Distributed-activation kinetics of heterogeneous martensitic nucleation , 1992 .

[11]  D. Parks,et al.  Effects of strain state on the kinetics of strain-induced martensite in steels , 1998 .

[12]  J. Boettger,et al.  Metastability and dynamics of the shock-induced phase transition in iron , 1997 .

[13]  P. S. Follansbee,et al.  High strain rate deformation in FCC metals and alloys , 1985 .

[14]  James K. Knowles,et al.  On the driving traction acting on a surface of strain discontinuity in a continuum , 1990 .

[15]  W. G. Burgers On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium , 1934 .

[16]  R. Boehler,et al.  Effect of non-hydrostaticity on the α-ε transition of iron , 1990 .

[17]  M. H. Rice,et al.  Elastic‐Plastic Properties of Iron , 1963 .

[18]  E. B. Marin,et al.  On modelling the elasto-viscoplastic response of metals using polycrystal plasticity , 1998 .

[19]  N. C. Krieger Lassen,et al.  On the statistical analysis of orientation data , 1994 .

[20]  R. Fletcher Practical Methods of Optimization , 1988 .

[21]  U. F. Kocks Laws for Work-Hardening and Low-Temperature Creep , 1976 .

[22]  Gregory B Olson,et al.  Kinetics of F.c.c. → b.c.c. heterogeneous martensitic nucleation-II. Thermal activation , 1994 .

[23]  R. Lebensohn Modelling the role of local correlations in polycrystal plasticity using viscoplastic self-consistent schemes , 1999 .

[24]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[25]  H. Mao,et al.  Effects of texture on the determination of elasticity of polycrystalline ϵ-iron from diffraction measurements , 2001 .

[26]  F. Wang,et al.  Iron bcc-hcp transition: Local structure from x-ray-absorption fine structure , 1998 .

[27]  Morris Cohen,et al.  Distributed-activation kinetics of , 1992, Metallurgical and Materials Transactions A.

[28]  D. Andrews,et al.  Equation of state of the alpha and epsilon phases of iron , 1973 .

[29]  M. Šilhavý On the Compatibility of Wells , 1999 .

[30]  David J. Benson,et al.  Crystal level simulations using Eulerian finite element methods , 2004 .

[31]  Etienne Patoor,et al.  Micromechanical Modelling of Superelasticity in Shape Memory Alloys , 1996 .

[32]  H. Mao,et al.  Corrigendum to “Deformation of polycrystalline iron up to 30 GPa and 1000 K” [Phys. Earth Planet Inter. 145 (2004) 239 251] , 2005 .

[33]  T. Hughes,et al.  Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .

[34]  L. M. Barker,et al.  Shock wave study of the α ⇄ ε phase transition in iron , 1974 .

[35]  Valery I. Levitas,et al.  Thermomechanical theory of martensitic phase transformations in inelastic materials , 1998 .

[36]  Eduardo M. Bringa,et al.  High-pressure, high-strain-rate lattice response of shocked materials , 2003 .

[37]  W. Bassett,et al.  Mechanism of the Body-Centered Cubic—Hexagonal Close-Packed Phase Transition in Iron , 1987, Science.

[38]  E. Werner,et al.  A new view on transformation induced plasticity (TRIP) , 2000 .

[39]  E. M. Nadgorny,et al.  Combined model of dislocation motion with thermally activated and drag-dependent stages , 2001 .

[40]  R. Boehler,et al.  Melting, thermal expansion, and phase transitions of iron at high pressures , 1990 .

[41]  On the kinetics of an austenite → martensite phase transformation induced by impact in a CuAlNi shape-memory alloy , 1997 .

[42]  Richard D. James,et al.  Martensitic transformations and shape-memory materials ☆ , 2000 .

[43]  H. Mao,et al.  Deformation of polycrystalline iron up to 30 GPa and 1000 K , 2004 .

[44]  K. Yano Mesomechanics of the α–ɛ transition in iron , 2002 .

[45]  H. Mao,et al.  Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar , 1967 .

[46]  Douglas S. Drumheller Introduction to Wave Propagation in Nonlinear Fluids and Solids , 1998 .

[47]  G. E. Duvall,et al.  Phase transitions under shock-wave loading , 1977 .

[48]  Alan Needleman,et al.  Material rate dependence and localized deformation in crystalline solids , 1983 .

[49]  Richard D. James,et al.  Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy , 1996 .

[50]  Mica Grujicic,et al.  Crystal plasticity analysis of stress–assisted martensitic transformation in Ti–10V–2Fe–3Al (wt.%) , 2000 .

[51]  P. Dawson,et al.  Finite element modeling of polycristalline solids , 1994 .

[52]  E. Stein,et al.  Numerical modelling of martensitic growth in an elastoplastic material , 2002 .

[53]  J. Reddy,et al.  On the inelastic behavior of crystalline silicon at elevated temperatures , 2001 .