Investigations on the crystal-structure and non-ambient behaviour of K 2 Ca 2 Si 8 O 19 ‐ a new potassium calcium silicate

Abstract Within the context of a systematic re-investigation of phase relationships between compounds of the ternary system K2O-CaO-SiO2 a new potassium calcium silicate with the chemical formula K2Ca2Si8O19 was synthesized via solid state reactions as well as the flux method using KCl as a solvent. Its crystal structure was determined from single-crystal X-ray diffraction data by applying direct methods. The new compound crystallizes in the triclinic space group P 1 ¯ . Unit cell dimensions are a = 7.4231(7) A, b = 10.7649(10) A, c = 12.1252(10) A, α = 70.193(8)°, β = 83.914(7)° and γ = 88.683(7)°. K2Ca2Si8O19 is built up of corner-connected, slightly distorted [SiO4]-tetrahedra forming double-sheets, which are linked by double-chains of edge-sharing [CaO6]-octahedra. Electroneutrality of the material is provided by additional potassium atoms that are located within the voids of the silicate layers and between adjacent [Ca2O6]-double-chains. Further characterization of the compound was performed by Raman spectroscopy and differential thermal analysis. The behaviour of K2Ca2Si8O19 under high-temperature and high-pressure was investigated by in-situ high-temperature powder X-ray diffraction up to a maximum temperature of 1125 °C and a piston cylinder experiment at 1.5 GPa and 1100 °C. Additionally an overview of known double-layer silicates is given as well as a comparison of K2Ca2Si8O19 to closely related structures.

[1]  J. Rocha,et al.  Synthesis and structure of new microporous Nd(III) silicates of the rhodesite group , 2015 .

[2]  R. W. Cheary,et al.  A fundamental parameters approach to X-ray line-profile fitting , 1992 .

[3]  S. Merlino,et al.  Crystal structure of rhodesite, HK1 −xNax+ 2yCa2 −y{lB,3,2∞2}[Si8O19] · (6 –z) H2O, from three localities and its relation to other silicates with dreier double layers , 1992 .

[4]  E. Verné,et al.  SiO2-CaO-K2O coatings on alumina and Ti6Al4V substrates for biomedical applications , 2005, Journal of materials science. Materials in medicine.

[5]  N. Bolotina,et al.  Refinement of the twinned structure of cymrite from the Ruby Creek deposit (Alaska) , 2010 .

[6]  P. Heaney,et al.  The Crystal Structure of Bannisterite , 1992 .

[7]  Joseph V. Smith,et al.  Arizona porphyry copper/hydrothermal deposits II: Crystal structure of ajoite, (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Britt-Marie Steenari,et al.  Characterization of ashes from wood and straw , 1995 .

[9]  W. A. Dollase,et al.  Correction of intensities for preferred orientation in powder diffractometry: application of the March model , 1986 .

[10]  W. H. Baur The Prediction of Bond Length Variations in Silicon-Oxygen Bonds , 1971 .

[11]  D. Többens,et al.  K 2 Ca 3 Si 3 O 10 , a novel trisilicate: high-pressure synthesis, structural, spectroscopic and computational studies , 2011 .

[12]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[13]  H. Minato,et al.  TRUSCOTTITE FROM THE TOI MINE, SHIZUOKA PREFECTURE , 1967 .

[14]  J. S. Reid,et al.  The Analytical Calculation of Absorption in Multifaceted Crystals , 1995 .

[15]  D. Többens,et al.  The crystal structure of the interrupted framework silicate K9.6Ca1.2Si12O30 determined from laboratory X-ray diffraction data , 2006 .

[16]  N. Chukanov,et al.  Fivegite K4Ca2[AlSi7O17(O2 − xOHx)][(H2O)2 − xOH]Cl: A new mineral species from the Khibiny alkaline pluton of the Kola Peninsula in Russia , 2011 .

[17]  N. Zubkova,et al.  Umbrianite, K7Na2Ca2[Al3Si10O29]F2Cl2, a new mineral species from melilitolite of the Pian di Celle volcano, Umbria, Italy , 2013 .

[18]  J. Poirier,et al.  Determination of the Liquidus Temperatures of Ashes from the Biomass Gazification for Fuel Production by Thermodynamical and Experimental Approaches , 2009 .

[19]  A. Kvick,et al.  A neutron diffraction and thermogravimetric study of the hydrogen bonding and dehydration behaviour in fluorapophyllite, KCa4(Si8O20)F.8H2O, and its partially dehydrated form , 1987 .

[20]  Y. Takéuchi,et al.  The crystal structure of hexagonal CaAl2Si2O8 , 1959 .

[21]  M. Bizzarro,et al.  Leter. Discovery of dmisteinbergite (hexagonal CaAl2Si2O8) in the Allende meteorite: A new member of refractory silicates formed in the solar nebula , 2013 .

[22]  S. Merlino,et al.  The crystal structure of tuscanite , 1977 .

[23]  G. Roth,et al.  The diphyllosilicate Rb2(VO)2[Si8O19]. , 2008, Acta crystallographica. Section C, Crystal structure communications.

[24]  T. Albrecht‐Schmitt,et al.  High temperature synthesis of two open-framework uranyl silicates with ten-ring channels: Cs2(UO2)2Si8O19 and Rb2(UO2)2Si5O13 , 2013 .

[25]  E. Tillmanns,et al.  Synthesis and crystal structure of a new microporous silicate with a mixed octahedral-tetrahedral framework: Cs3ScSi8O19 , 2004, Mineralogical Magazine.

[26]  Maria Cristina Burla,et al.  SIR2004: an improved tool for crystal structure determination and refinement , 2005 .

[27]  D. Lindberg,et al.  The Thermodynamics of Slag Forming Inorganic Phases in Biomass Combustion Processes , 2017 .

[28]  Evgueni Jak,et al.  The Use of Thermodynamic Modeling to Examine Alkali Recirculation in the Iron Blast Furnace , 2012 .

[29]  Jinxiang Dong,et al.  Synthesis and structure analysis of the potassium calcium silicate CAS-1. Application of a texture approach to structure solution using data collected in transmission mode , 2005 .

[30]  Lynne B. McCusker,et al.  Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts(IUPAC Recommendations 2001) , 2001 .

[31]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[32]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[33]  G. V. Gibbs,et al.  Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra , 1971, Science.

[34]  Hans Wondratschek,et al.  Bilbao Crystallographic Server: I. Databases and crystallographic computing programs , 2006 .

[35]  S. Guggenheim,et al.  The use of electron optical methods to determine the crystal structure of a modulated phyllosilicate; parsettensite , 1994 .

[36]  F. Liebau Structural chemistry of silicates , 1985 .

[37]  Michael O'Keeffe,et al.  Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology , 2010 .

[38]  D. Többens,et al.  K2Ca6Si4O15-structural and spectroscopical studies on a mixed tetrahedral-octahedral framework , 2009 .

[39]  Marcus Öhman,et al.  Predicting slagging tendencies for biomass pellets fired in residential appliances : a comparison of different prediction methods , 2008 .

[40]  A. Jacobson,et al.  Nanoporous copper silicates with one-dimensional 12-ring channel systems. , 2003, Angewandte Chemie.

[41]  F. Liebau,et al.  Computerized crystal-chemical classification of silicates and related materials with CRYSTANA and formula notation for classified structures , 2008 .

[42]  P. Burns,et al.  THE STRUCTURE OF FEDORITE: A RE-APPRAISAL , 2001 .

[43]  A. McDonald,et al.  LALONDEITE, A NEW HYDRATED Na–Ca FLUOROSILICATE SPECIES FROM MONT SAINT-HILAIRE, QUEBEC: DESCRIPTION AND CRYSTAL STRUCTURE , 2009 .

[44]  Michael O'Keeffe,et al.  Bond-valence parameters for solids , 1991 .

[45]  J. Faber,et al.  Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature , 1985 .

[46]  Christoffer Boman,et al.  Ash Transformation Chemistry during Combustion of Biomass , 2012 .

[47]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[48]  Tatsuhito Takahashi,et al.  New applications for iron and steelmaking slag , 2002 .

[49]  C. Campana,et al.  Symmetry and crystal structure of montregianite, Na 4 K 2 Y 2 Si 16 O 38 .10H 2 O, a double-sheet silicate with zeolitic properties , 1987 .

[50]  Anthony R. Kampf,et al.  ESQUIREITE, BaSi6O13∙7H2O, A NEW LAYER SILICATE FROM THE BARIUM SILICATE DEPOSITS OF CALIFORNIA , 2015 .

[51]  V. Kahlenberg,et al.  Structural investigations on the fertilizer component K2Ca2Si2O7 , 2011 .

[52]  J. M. Perez-Mato,et al.  Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies , 2003 .

[53]  G. Ferraris,et al.  Two new silicate structures based on a rhodesite-type heteropolyhedral microporous framework. , 2010, Acta Crystallographica Section B Structural Science.

[54]  M. Tribus,et al.  Crystal structure, Raman spectroscopy and crystal chemistry of K7Ca9[Si2O7]4F, a new potassium-calcium silicate-fluoride , 2016 .

[55]  Hailong Li,et al.  Investigation of rye straw ash sintering characteristics and the effect of additives , 2016 .

[56]  R. Tessadri,et al.  Does K2CaSiO4 Exist? A Phase-Analytical Study in the System K2O–CaO–SiO2 with Implications for the Characterization of Residual Materials , 2011 .

[57]  V. Kahlenberg,et al.  LaAlSiO5 and apatite-type La9.71(Si0.81Al0.19O4)6O2: the crystal structures of two synthetic lanthanum alumosilicates , 2004 .

[58]  P. Masset,et al.  Thermodynamic Modeling of the CaO-SiO2-M2O (M=K,Na) Systems , 2013 .

[59]  H. Graetsch Rietveld refinement of incommensurate low tridymite , 2003 .

[60]  Y. Filinchuk,et al.  Crystal structures of shlykovite and cryptophyllite: Comparative crystal chemistry of phyllosilicate minerals of the mountainite family , 2010 .

[61]  E. Tillmanns,et al.  CRYSTAL CHEMISTRY AND TOPOLOGY OF TWO FLUX-GROWN YTTRIUM SILICATES, BaKYSi2O7 AND Cs3YSi8O19 , 2009 .

[62]  G. Ferraris,et al.  Two new members of the rhodesite mero-plesiotype series close to delhayelite and hydrodelhayelite: synthesis and crystal structure , 2009 .

[63]  R. Kaindl,et al.  Structural and Raman Spectroscopic Investigations of K4BaSi3O9 and K4CaSi3O9 , 2009 .

[64]  N. Chukanov,et al.  Crystal chemistry of delhayelite and hydrodelhayelite , 2009 .

[65]  E. Belluso,et al.  THE CRYSTAL STRUCTURE OF SEIDITE-(Ce), Na4(Ce,Sr)2{Ti(OH)2(Si8O18)}(O,OH,F)4·5H2O, A MODULAR MICROPOROUS TITANOSILICATE OF THE RHODESITE GROUP , 2003 .

[66]  Lingbao Wang,et al.  Hydrothermal synthesis and structures of the open-framework copper silicates Na2[Cu2Si4O11](H2O)2 (CuSH-2Na), Na2[CuSi3O8] (CuSH-3Na), Cs2Na4[Cu2Si12O27(OH)2](OH)2 (CuSH-4NaCs), and Na2[Cu2Si5O13](H2O)3 (CuSH-6Na) , 2005 .

[67]  M. Tribus,et al.  On the ambient pressure polymorph of K2Ca3Si3O10—An unusual mixed-anion silicate and its structural and spectroscopic characterization , 2015 .

[68]  S. Merlino The structure of reyerite, (Na,K)2Ca14Si22Al2O58(OH)8.6H2O , 1988, Mineralogical Magazine.

[69]  J. Rocha,et al.  The First Microporous Framework Cerium Silicate , 2000 .

[70]  L. Carlos,et al.  The first examples of X-ray phosphors, and C-band infrared emitters based on microporous lanthanide silicates , 2004 .

[71]  S. Krivovichev,et al.  Armbrusterite, K5Na6Mn3+Mn2+ 14[Si9O22]4(OH)10·4H2O, a new Mn hydrous heterophyllosilicate from the Khibiny alkaline massif, Kola Peninsula, Russia , 2007 .