Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery

[1]  D. Hall,et al.  Landsat digital analysis of the initial recovery of burned tundra at Kokolik River, Alaska , 1980 .

[2]  C. Bricker,et al.  Remote sensing techniques: state of the art. , 1980 .

[3]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[4]  J. Neter,et al.  Applied Linear Regression Models , 1983 .

[5]  A. K. Milne,et al.  The use of remote sensing in mapping and monitoring vegetational change associated with bushfire events in Eastern Australia , 1986 .

[6]  B. M. Davis Uses and abuses of cross-validation in geostatistics , 1987 .

[7]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[8]  G. Guyot,et al.  Factors affecting the spectral response of forest canopies: A review , 1989 .

[9]  P. Mausel,et al.  Assessment of vegetation change in a fire-altered forest landscape. , 1990 .

[10]  P. S. Kealy,et al.  Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[11]  Arthur S. Lieberman,et al.  Landscape Ecology , 1994, Springer New York.

[12]  Lorraine Remer,et al.  Detection of forests using mid-IR reflectance: an application for aerosol studies , 1994, IEEE Trans. Geosci. Remote. Sens..

[13]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[14]  S. Running,et al.  Remote Sensing of Forest Fire Severity and Vegetation Recovery , 1996 .

[15]  Geoffrey J. Hay,et al.  An object-specific image-texture analysis of H-resolution forest imagery☆ , 1996 .

[16]  Warren B. Cohen,et al.  Empirical methods to compensate for a view-angle-dependent brightness gradient in AVIRIS imagery☆ , 1997 .

[17]  Ellsworth F. LeDrew,et al.  Spectral Discrimination of Healthy and Non-Healthy Corals Based on Cluster Analysis, Principal Components Analysis, and Derivative Spectroscopy , 1998 .

[18]  M. Turner,et al.  Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances , 1998, Ecosystems.

[19]  S. Hook,et al.  The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies , 2001 .

[20]  I. Jolliffe Principal Component Analysis , 2002 .

[21]  Maggi Kelly,et al.  Landscape Dynamics of the Spread of Sudden Oak Death , 2002 .

[22]  M. Déqué,et al.  Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change , 2004 .

[23]  Andrew T. Hudak,et al.  Mapping fire scars in a southern African savannah using Landsat imagery , 2004 .

[24]  Ron Kwok,et al.  Mass Balance of the Cryosphere: Remote-sensing techniques , 2004 .

[25]  David M Rizzo,et al.  Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. , 2005, Annual review of phytopathology.

[26]  D. Roy,et al.  Characterizing the surface heterogeneity of fire effects using multi‐temporal reflective wavelength data , 2005 .

[27]  S. A. Lewis,et al.  Remote sensing techniques to assess active fire characteristics and post-fire effects , 2006 .

[28]  N. Benson,et al.  Landscape Assessment: Ground measure of severity, the Composite Burn Index; and Remote sensing of severity, the Normalized Burn Ratio , 2006 .

[29]  Michael A. Wulder,et al.  Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities , 2006 .

[30]  R. Meentemeyer,et al.  Impact of sudden oak death on tree mortality in the Big Sur ecoregion of California , 2008, Biological Invasions.

[31]  W. Kurz,et al.  Mountain pine beetle and forest carbon feedback to climate change , 2008, Nature.

[32]  Geoffrey J. Hay,et al.  Image objects and geographic objects , 2008 .

[33]  G. Hay,et al.  Object-Based Image Analysis , 2008 .

[34]  Geoffrey J. Hay,et al.  Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline , 2008 .

[35]  Thomas Blaschke,et al.  Object-Based Image Analysis , 2008 .

[36]  Maggi Kelly,et al.  Spatial pattern dynamics of oak mortality and associated disease symptoms in a California hardwood forest affected by sudden oak death , 2008, Journal of Forest Research.

[37]  Wesley G. Page,et al.  Bark beetles, fuels, fires and implications for forest management in the Intermountain West , 2008 .

[38]  Ioannis Z. Gitas,et al.  Mapping the severity of fire using object-based classification of Ikonos imagery , 2008 .

[39]  Aster Gdem Srtm Dted,et al.  ASTER Global DEM Validation Summary Report , 2009 .

[40]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[41]  Andrew M. Liebhold,et al.  Historical Accumulation of Nonindigenous Forest Pests in the Continental United States , 2010 .

[42]  F. Davis,et al.  Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region; California. , 2010 .

[43]  Sander Veraverbeke,et al.  Evaluating Spectral Indices for Assessing Fire Severity in Chaparral Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data , 2011, Remote. Sens..

[44]  R. Meentemeyer,et al.  Interacting disturbances: wildfire severity affected by stage of forest disease invasion. , 2011, Ecological applications : a publication of the Ecological Society of America.

[45]  J. G. Lyon,et al.  Hyperspectral Remote Sensing of Vegetation , 2011 .

[46]  Geoffrey J. Hay,et al.  A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using Quickbird imagery , 2011, Int. J. Geogr. Inf. Sci..

[47]  Ross K Meentemeyer,et al.  Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. , 2012, Annual review of phytopathology.

[48]  Simon J. Hook,et al.  Synergy of VSWIR (0.4-2.5 mu m) and MTIR (3.5-12.5 mu m) data for post-fire assessments , 2012 .

[49]  Lars Eklundh,et al.  A new invasive insect in Sweden – Physokermes inopinatus: Tracing forest damage with satellite based remote sensing , 2012 .

[50]  Carsten Rahbek,et al.  The patterns and causes of elevational diversity gradients , 2012 .

[51]  Gang Chen,et al.  Article in Press G Model International Journal of Applied Earth Observation and Geoinformation a Geobia Framework to Estimate Forest Parameters from Lidar Transects, Quickbird Imagery and Machine Learning: a Case Study in Quebec, Canada , 2022 .

[52]  Brian J. Harvey,et al.  Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. , 2013, Ecology.

[53]  S. Hook,et al.  Evaluating spectral indices and spectral mixture analysis for assessing fire severity, combustion completeness and carbon emissions , 2013 .

[54]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[55]  I. Boyd,et al.  The Consequence of Tree Pests and Diseases for Ecosystem Services , 2013, Science.

[56]  R. Meentemeyer,et al.  Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease. , 2013, Ecology.

[57]  Gregory P Asner,et al.  Geography of forest disturbance , 2013, Proceedings of the National Academy of Sciences.

[58]  Thomas Blaschke,et al.  Geographic Object-Based Image Analysis – Towards a new paradigm , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.