Kinetics of scalar wave fields in random media

This paper concerns the derivation of kinetic models for high frequency scalar wave fields propagating in random media. The kinetic equations model the propagation in the phase space of the energy density of a wave field or the correlation function of two wave fields propagating in two possibly different media. Dispersive effects due to, e.g. spatial and temporal discretizations, which are modeled as non-local pseudo-differential operators, are taken into account. The derivation of the models is based on a multiple-scale asymptotic expansion of the spatio-temporal Wigner transform of two scalar wave fields.

[1]  Frédéric Poupaud,et al.  The pseudo-differential approach¶to finite differences revisited , 1999 .

[2]  Guillaume Bal,et al.  Wave transport along surfaces with random impedance , 2000 .

[3]  J. Achenbach Wave propagation in elastic solids , 1962 .

[4]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[5]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[6]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[7]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[8]  On the kinetic theory of wave propagation in random media , 1973, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[9]  Herbert Spohn,et al.  Derivation of the transport equation for electrons moving through random impurities , 1977 .

[10]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[11]  A. G. Vinogradov,et al.  Application of the theory of multiple scattering of waves to the derivation of the radiation transfer equation for a statistically inhomogeneous medium , 1972 .

[12]  Guillaume Bal,et al.  Probabilistic Theory of Transport Processes with Polarization , 2000, SIAM J. Appl. Math..

[13]  Michel Campillo,et al.  Radiative transfer and diffusion of waves in a layered medium: new insight into coda Q , 1998 .

[14]  George Papanicolaou,et al.  Transport equations for elastic and other waves in random media , 1996 .

[15]  Xiao Ping Wang,et al.  Transport equations for a general class of evolution equations with random perturbations , 1999 .

[16]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[17]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[18]  J. Vanneste,et al.  Transport equations for waves in randomly perturbed Hamiltonian systems, with application to Rossby waves , 2005 .

[19]  Peter A. Markowich,et al.  A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[20]  Kenneth M. Watson,et al.  Multiple Scattering of Electromagnetic Waves in an Underdense Plasma , 1969 .

[21]  G. Bal,et al.  Stability of time reversed waves in changing media , 2004, cond-mat/0404267.

[22]  G. Cohen,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[23]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[24]  Capillary–gravity wave transport over spatially random drift , 2000, physics/0001001.

[25]  Guillaume Bal,et al.  Time Reversal in Changing Environments , 2004, Multiscale Model. Simul..

[26]  P. Sheng,et al.  Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Second edition , 1995 .

[27]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[28]  Guillaume Bal,et al.  Radiative Transport in a Periodic Structure , 1999 .

[29]  H. Yau,et al.  Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation , 1999 .

[30]  G. Bal,et al.  Wave transport for a scalar model of the Love waves , 2002 .