Covalency in transition-metal oxides within all-electron dynamical mean-field theory

A combination of dynamical mean field theory and density functional theory, as implemented in Phys. Rev. B 81, 195107 (2010), is applied to both the early and late transition metal oxides. For fixed value of the local Coulomb repulsion, without fine tuning, we obtain the main features of these series, such as the metallic character of SrVO$_3$ and the the insulating gaps of LaVO$_3$, LaTiO$_3$ and La$_2$CO$_4$ which are in good agreement with experiment. The study highlights the importance of local physics and high energy hybridization in the screening of the Hubbard interaction and how different low energy behaviors can emerge from the a unified treatment of the transition metal series.

[1]  Satoshi Okamoto,et al.  Dimensional-crossover-driven metal-insulator transition in SrVO3 ultrathin films. , 2010, Physical review letters.

[2]  W. Pickett,et al.  Charge fluctuations and the valence transition in Yb under pressure. , 2009, Physical review letters.

[3]  Takashi Miyake,et al.  Ab initio procedure for constructing effective models of correlated materials with entangled band structure , 2009, 0906.1344.

[4]  F. Cyrot-Lackmann,et al.  Preparation and structure of the compounds SrVO3 and Sr2VO4 , 1990 .

[5]  H. Bethe Theorie der Beugung von Elektronen an Kristallen , 1928 .

[6]  Antoine Georges,et al.  The alpha-gamma transition of cerium is entropy driven. , 2006, Physical review letters.

[7]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[8]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[9]  How chemistry controls electron localization in 3d1 perovskites: a Wannier-function study , 2005, cond-mat/0504034.

[10]  Optical conductivity in Mott-Hubbard systems. , 1995, Physical review letters.

[11]  G. Kotliar,et al.  Correlation-enhanced electron-phonon coupling: Applications of GW and screened hybrid functional to bismuthates, chloronitrides, and other high-Tc superconductors , 2011, 1110.5751.

[12]  M. Rozenberg,et al.  Metal-insulator transitions in the periodic Anderson model. , 2007, Physical review letters.

[13]  I. A. Nekrasov,et al.  Comparative study of correlation effects in CaVO3 and SrVO3 , 2005, cond-mat/0501240.

[14]  R. K. Smith,et al.  Optical study of strained ultrathin films of strongly correlated LaNiO 3 , 2011 .

[15]  Y. Tokura,et al.  Photoemission spectral weight transfer and mass renormalization in the Fermi-liquid system La1 − xSrxTiO3 + y/2 , 1999, cond-mat/9911446.

[16]  David Vanderbilt,et al.  Effective J=1/2 insulating state in Ruddlesden-Popper iridates: an LDA+DMFT study. , 2013, Physical review letters.

[17]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[18]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[19]  G. Kotliar,et al.  Fluctuating valence in a correlated solid and the anomalous properties of δ-plutonium , 2007, Nature.

[20]  Kristjan Haule Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base , 2007 .

[21]  Zhang,et al.  Mott transition in the d= , 1993, Physical review letters.

[22]  D. Vollhardt,et al.  Correlated Lattice Fermions in High Dimensions , 1989 .

[23]  Zhang,et al.  Mott-Hubbard transition in infinite dimensions. II. , 1994, Physical review. B, Condensed matter.

[24]  G. Kotliar,et al.  X-ray absorption branching ratio in actinides: LDA+DMFT approach , 2008, 0809.3843.

[25]  Antoine Georges,et al.  Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites. , 2004, Physical review letters.

[26]  Andrew J. Millis,et al.  Covalency and the metal-insulator transition in titanate and vanadate perovskites , 2014 .

[27]  Suzuki,et al.  Photoemission study of single-crystalline (La1-xSrx , 1988, Physical review. B, Condensed matter.

[28]  Kwang Soo Kim,et al.  Orbital selective Fermi surface shifts and mechanism of high T(c) superconductivity in correlated AFeAs (A=Li, Na). , 2012, Physical review letters.

[29]  K. Shimizu,et al.  Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. , 2011, Physical review letters.

[30]  Patrick S'emon,et al.  Importance of subleading corrections for the Mott critical point , 2011, 1110.6195.

[31]  Kristjan Haule,et al.  Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn 5 , CeCoIn 5 , and CeRhIn 5 , 2009, 0907.0195.

[32]  F. Lechermann,et al.  Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials , 2006 .

[33]  Lev P. Gor'kov,et al.  Quantum field theoretical methods in statistical physics , 1967 .

[34]  G. Kotliar,et al.  Arrested Kondo effect and hidden order in URu 2 Si 2 , 2009, 0907.3889.

[35]  Andrew J. Millis,et al.  Covalency, double-counting, and the metal-insulator phase diagram in transition metal oxides , 2011, 1110.2782.

[36]  Markus Aichhorn,et al.  Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO , 2011, 1104.4361.

[37]  李幼升,et al.  Ph , 1989 .

[38]  G. Kotliar,et al.  Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. , 2011, Nature materials.

[39]  G. Kotliar,et al.  Screening of magnetic moments in PuAm alloy: local density approximation and dynamical mean field theory study. , 2008, Physical review letters.

[40]  Antoine Georges,et al.  Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals , 2008, 0801.4353.

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  G. Kotliar,et al.  Calculated Phonon Spectra of Plutonium at High Temperatures , 2003, Science.

[43]  T. Lorenz,et al.  Crystal and magnetic structure of LaTiO3 : evidence for non-degenerate $t_{2g}$-orbitals , 2003, cond-mat/0302087.

[44]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[45]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[46]  O. K. Andersen,et al.  Orbital fluctuations in the different phases of LaVO(3) and YVO(3). , 2007, Physical review letters.

[47]  A. I. Lichtenstein,et al.  Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach , 1997, cond-mat/9707127.

[48]  P. Woodward Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces , 1997 .

[49]  G. Kotliar,et al.  Plutonium hexaboride is a correlated topological insulator. , 2013, Physical review letters.

[50]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[51]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[52]  A. Georges,et al.  Universality and Critical Behavior at the Mott Transition , 2003, Science.

[53]  R. K. Smith,et al.  Optical probe of strong correlations in LaNiO3 thin films , 2010, 1005.3314.

[54]  K. Held,et al.  Electronic structure calculations using dynamical mean field theory , 2005, cond-mat/0511293.

[55]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[56]  N. Mott,et al.  Discussion of the paper by de Boer and Verwey , 1937 .

[57]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[58]  G. Kotliar,et al.  Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5. , 2011, Physical review letters.

[59]  Martin Dressel,et al.  Electrodynamics of correlated electron materials , 2011, 1106.2309.

[60]  A. Georges,et al.  Coherence-incoherence crossover and the mass-renormalization puzzles in Sr(2)RuO(4). , 2010, Physical review letters.

[61]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[62]  R. Scalettar,et al.  Cerium volume collapse: results from the merger of dynamical mean-field theory and local density approximation. , 2001, Physical review letters.

[63]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[64]  G. Kotliar,et al.  Correlated electrons in δ-plutonium within a dynamical mean-field picture , 2001, Nature.

[65]  T. Björkman,et al.  Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: Methodology and applications , 2011, 1110.2606.

[66]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[67]  K Tanaka,et al.  Direct observation of the mass renormalization in SrVO3 by angle resolved photoemission spectroscopy. , 2005, Physical review letters.

[68]  G. Kotliar,et al.  Magnetism and charge dynamics in iron pnictides , 2010, 1007.2867.

[69]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[70]  F. Bloch,et al.  Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit , 1929 .

[71]  USA,et al.  First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory , 1997, cond-mat/9704231.

[72]  D. MacLean,et al.  Crystal structures and crystal chemistry of the RETiO3 perovskites: RE = La, Nd, Sm, Gd, Y , 1979 .

[73]  G. Kotliar,et al.  Modeling the Localized-to-Itinerant Electronic Transition in the Heavy Fermion System CeIrIn5 , 2007, Science.

[74]  B. Batlogg,et al.  Structural Aspects of the Crystallographic-Magnetic Transition in LaVO3 around 140 K , 1993 .

[75]  F. Lechermann,et al.  Nature of the Mott transition in Ca2RuO4. , 2010, Physical review letters.

[76]  Hideomi Koinuma,et al.  Coherent and incoherent d band dispersions in SrVO 3 , 2009 .

[77]  G. Kotliar,et al.  Signatures of electronic correlations in iron silicide , 2011, Proceedings of the National Academy of Sciences.

[78]  S. Hayden,et al.  Nature of magnetic excitations in superconducting BaFe1.9Ni0.1As2 , 2012, Nature Physics.

[79]  G. Wannier The Structure of Electronic Excitation Levels in Insulating Crystals , 1937 .

[80]  Georges,et al.  Numerical solution of the d= , 1992, Physical review letters.

[81]  Matthias Troyer,et al.  Continuous-time solver for quantum impurity models. , 2005, Physical review letters.

[82]  Mark Jarrell,et al.  Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data , 1996 .

[83]  A. I. Lichtenstein,et al.  Frequency-dependent local interactions and low-energy effective models from electronic structure calculations , 2004 .

[84]  G. Kotliar,et al.  Spectral density functionals for electronic structure calculations , 2001, cond-mat/0106308.

[85]  G. Kotliar,et al.  Self consistent GW determination of the interaction strength: application to the iron arsenide superconductors , 2010, 1005.0885.

[86]  T. Kajitani,et al.  X-ray and neutron single-crystal diffraction study on La1.92Sr0.08CuO4−y , 1990 .

[87]  Gabriel Kotliar,et al.  Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory , 2004 .

[88]  D. Sarma,et al.  Spectroscopic investigations of the electronic structure and metal-insulator transitions in a Mott-Hubbard system La 1 − x Ca x VO 3 , 2000 .

[89]  W. Pickett,et al.  Electronic correlation and transport properties of nuclear fuel materials , 2010, 1012.2412.

[90]  G. Kotliar,et al.  Valence fluctuations and quasiparticle multiplets in plutonium chalcogenides and pnictides , 2009, 0909.4586.

[91]  B. Scott,et al.  Electronic structure and correlation effects in PuCoIn5 as compared to PuCoGa5 , 2011, 1106.4314.