Dynamic optimization using adaptive control vector parameterization

[1]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[2]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[3]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[4]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[5]  W. E. Stewart,et al.  Sensitivity analysis of initial value problems with mixed odes and algebraic equations , 1985 .

[6]  Dieter Kraft,et al.  On Converting Optimal Control Problems into Nonlinear Programming Problems , 1985 .

[7]  P. Gill,et al.  Fortran package for nonlinear programming. User's Guide for NPSOL (Version 4. 0) , 1986 .

[8]  J. E. Cuthrell,et al.  On the optimization of differential-algebraic process systems , 1987 .

[9]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[10]  Elijah Polak,et al.  On the use of consistent approximations in the solution of semi-infinite optimization and optimal control problems , 1993, Math. Program..

[11]  Oskar von Stryk,et al.  Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen , 1994 .

[12]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[13]  L. Biegler,et al.  A nested, simultaneous approach for dynamic optimization problems—I , 1996 .

[14]  L. Biegler,et al.  A nested, simultaneous approach for dynamic optimization problems - II : the outer problem , 1997 .

[15]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[16]  P. I. Barton,et al.  Efficient sensitivity analysis of large-scale differential-algebraic systems , 1997 .

[17]  E. Gilles,et al.  Optimal feeding strategies by adaptive mesh selection for fed-batch bioprocesses , 1997 .

[18]  J. Betts,et al.  MESH REFINEMENT IN DIRECT TRANSCRIPTION METHODS FOR OPTIMAL CONTROL , 1998 .

[19]  P. I. Barton,et al.  Dynamic optimization with state variable path constraints , 1998 .

[20]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[21]  T. Binder,et al.  Dynamic optimization using a wavelet based adaptive control vector parameterization strategy , 2000 .

[22]  W. Dahmen,et al.  Iterative Algorithms for Multiscale State Estimation, Part 1: Concepts , 2001 .

[23]  Wolfgang Marquardt,et al.  Component-based implementation of a dynamic optimization algorithm using adaptive parameterization , 2001 .

[24]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[25]  Eva Balsa-Canto,et al.  Dynamic optimization of chemical and biochemical processes using restricted second order information , 2001 .

[26]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[27]  V. Vassiliadis,et al.  Restricted second order information for the solution of optimal control problems using control vector parameterization , 2002 .

[28]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: I. Characterization of the nominal solution , 2003, Comput. Chem. Eng..

[29]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[30]  W. Marquardt,et al.  Sensitivity analysis of linearly-implicit differential-algebraic systems by one-step extrapolation , 2004 .

[31]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..