Metal oxides for optoelectronic applications.

[1]  V. Gopalan,et al.  Correlated metals as transparent conductors. , 2016, Nature materials.

[2]  H. Schmidt,et al.  Electronic Transport Properties of Transition Metal Dichalcogenide Field‐Effect Devices: Surface and Interface Effects , 2015 .

[3]  A. Alastalo,et al.  Flexography‐Printed In2O3 Semiconductor Layers for High‐Mobility Thin‐Film Transistors on Flexible Plastic Substrate , 2015, Advanced materials.

[4]  J. Shyue,et al.  Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition. , 2015, ACS applied materials & interfaces.

[5]  D. Choi,et al.  Coplanar homojunction a-InGaZnO thin film transistor fabricated using ultraviolet irradiation , 2015 .

[6]  Guoxia Liu,et al.  Solution-processed p-type copper oxide thin-film transistors fabricated by using a one-step vacuum annealing technique , 2015 .

[7]  Wi Hyoung Lee,et al.  Printed In-Ga-Zn-O drop-based thin-film transistors sintered using intensely pulsed white light , 2015 .

[8]  K. Bonrad,et al.  Engineering of Flexo- and Gravure-Printed Indium–Zinc-Oxide Semiconductor Layers for High-Performance Thin-Film Transistors , 2015, IEEE Transactions on Electron Devices.

[9]  Chao Gao,et al.  Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene. , 2015, Chemical reviews.

[10]  J. Medvedeva,et al.  Cation Size Effects on the Electronic and Structural Properties of Solution‐Processed In–X–O Thin Films , 2015 .

[11]  Christoph J. Brabec,et al.  Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes , 2015 .

[12]  E. Kymakis,et al.  High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices , 2015, Advanced science.

[13]  Junsheng Yu,et al.  Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors , 2015, Proceedings of the National Academy of Sciences.

[14]  L. Lauhon,et al.  Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. , 2014, Nano letters.

[15]  Chang-Ho Choi,et al.  Printed Oxide Thin Film Transistors: A Mini Review , 2015 .

[16]  Jin Jang,et al.  A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83% , 2015 .

[17]  Xinge Yu,et al.  Charge‐Trap Flash‐Memory Oxide Transistors Enabled by Copper–Zirconia Composites , 2014, Advanced materials.

[18]  J. Myoung,et al.  Gate Capacitance‐Dependent Field‐Effect Mobility in Solution‐Processed Oxide Semiconductor Thin‐Film Transistors , 2014 .

[19]  J. Anthony Organic electronics: addressing challenges. , 2014, Nature materials.

[20]  N. Dasgupta,et al.  Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells. , 2014, Nano letters.

[21]  M. Jayaraj,et al.  Room temperature deposited transparent p-channel CuO thin film transistors , 2014 .

[22]  Xinge Yu,et al.  Ultraflexible Polymer Solar Cells Using Amorphous Zinc−Indium−Tin Oxide Transparent Electrodes , 2014, Advanced materials.

[23]  Peng Bao,et al.  Sputtered ZnO Thin-Film Transistors With Carrier Mobility Over 50 ${\rm cm}^{2}/{\rm Vs}$ , 2013, IEEE Transactions on Electron Devices.

[24]  A. Heeger,et al.  Enhanced Efficiency Parameters of Solution‐Processable Small‐Molecule Solar Cells Depending on ITO Sheet Resistance , 2013 .

[25]  Aram Amassian,et al.  High‐Performance ZnO Transistors Processed Via an Aqueous Carbon‐Free Metal Oxide Precursor Route at Temperatures Between 80–180 °C , 2013, Advanced materials.

[26]  Wei Zhao,et al.  Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors. , 2013, Journal of the American Chemical Society.

[27]  Se Hyun Kim,et al.  Printed, sub‐2V ZnO Electrolyte Gated Transistors and Inverters on Plastic , 2013, Advances in Materials.

[28]  Young-Min Choi,et al.  Metal salt-derived In–Ga–Zn–O semiconductors incorporating formamide as a novel co-solvent for producing solution-processed, electrohydrodynamic-jet printed, high performance oxide transistors , 2013 .

[29]  Jae Kyeong Jeong,et al.  Improvement in Photo-Bias Stability of High-Mobility Indium Zinc Oxide Thin-Film Transistors by Oxygen High-Pressure Annealing , 2013, IEEE Electron Device Letters.

[30]  Pedro Barquinha,et al.  Recyclable, Flexible, Low‐Power Oxide Electronics , 2013 .

[31]  Thomas D. Anthopoulos,et al.  p-channel thin-film transistors based on spray-coated Cu2O films , 2013 .

[32]  D. Rhodes,et al.  Superconductivity with extremely large upper critical fields in Nb$_{2}$Pd$_{0.81}$S$_{5}$ , 2013 .

[33]  You Seung Rim,et al.  Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis. , 2013, ACS applied materials & interfaces.

[34]  Shinhyuk Yang,et al.  An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates , 2013 .

[35]  Yuki Nishi,et al.  High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer , 2013 .

[36]  G. Zou,et al.  Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p-n horizontal-multi-layer heterostructure for room temperature H2S sensor application , 2013, Scientific Reports.

[37]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[38]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[39]  S. Cho,et al.  Novel Zinc Oxide Inks with Zinc Oxide Nanoparticles for Low-Temperature, Solution-Processed Thin-Film Transistors , 2012 .

[40]  Dong Lim Kim,et al.  Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors , 2012 .

[41]  M. Kanatzidis,et al.  Exploratory combustion synthesis: amorphous indium yttrium oxide for thin-film transistors. , 2012, Journal of the American Chemical Society.

[42]  Sunho Jeong,et al.  Low-temperature, solution-processed metal oxide thin film transistors , 2012 .

[43]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[44]  J. Ouyang,et al.  High-performance inverted polymer solar cells with lead monoxide-modified indium tin oxides as the cathode , 2011 .

[45]  D. Bradley,et al.  Efficient Organic Solar Cells with Solution‐Processed Silver Nanowire Electrodes , 2011, Advanced materials.

[46]  S. Bent,et al.  Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. , 2011, Nanoscale.

[47]  Chih‐Ping Chen,et al.  High‐Performance and Highly Durable Inverted Organic Photovoltaics Embedding Solution‐Processable Vanadium Oxides as an Interfacial Hole‐Transporting Layer , 2011, Advanced materials.

[48]  Ooi Kiang Tan,et al.  Low‐Temperature Growth of SnO2 Nanorod Arrays and Tunable n–p–n Sensing Response of a ZnO/SnO2 Heterojunction for Exclusive Hydrogen Sensors , 2011 .

[49]  M. Furuta,et al.  Extraction of Trap Densities in ZnO Thin-Film Transistors and Dependence on Oxygen Partial Pressure During Sputtering of ZnO Films , 2011, IEEE Transactions on Electron Devices.

[50]  Christoph J. Brabec,et al.  High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension , 2011 .

[51]  T. Riedl,et al.  Solution Processed Vanadium Pentoxide as Charge Extraction Layer for Organic Solar Cells , 2011 .

[52]  M. Kanatzidis,et al.  Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. , 2011, Nature materials.

[53]  Richard H. Friend,et al.  Doping of Organic Semiconductors Using Molybdenum Trioxide: a Quantitative Time‐Dependent Electrical and Spectroscopic Study , 2011 .

[54]  Jin Jang,et al.  Time-temperature dependence of positive gate bias stress and recovery in amorphous indium-gallium-zinc-oxide thin-film-transistors , 2011 .

[55]  Yanming Sun,et al.  Inverted Polymer Solar Cells Integrated with a Low‐Temperature‐Annealed Sol‐Gel‐Derived ZnO Film as an Electron Transport Layer , 2011, Advanced materials.

[56]  Chih-hung Chang,et al.  Low-temperature, high-performance, solution-processed indium oxide thin-film transistors. , 2011, Journal of the American Chemical Society.

[57]  Jens Meyer,et al.  MoO3 Films Spin‐Coated from a Nanoparticle Suspension for Efficient Hole‐Injection in Organic Electronics , 2011, Advanced materials.

[58]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[59]  Ching-Fuh Lin,et al.  Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells , 2010 .

[60]  Dianqing Li,et al.  Preparation, characterization of WO3–SnO2 nanocomposites and their sensing properties for NO2 , 2010 .

[61]  Hisashi Shima,et al.  Resistive Random Access Memory (ReRAM) Based on Metal Oxides , 2010, Proceedings of the IEEE.

[62]  Jan G. Korvink,et al.  Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials , 2010 .

[63]  Gun Hee Kim,et al.  Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors , 2010 .

[64]  D. Ginley,et al.  Solution deposited NiO thin-films as hole transport layers in organic photovoltaics , 2010 .

[65]  Surface Treatment of NiO Hole Transport Layers for Organic Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[66]  Jin-seong Park,et al.  The impact of SiNx gate insulators on amorphous indium-gallium-zinc oxide thin film transistors under bias-temperature-illumination stress , 2010 .

[67]  Pedro Barquinha,et al.  Thin-film transistors based on p-type Cu2O thin films produced at room temperature , 2010 .

[68]  T. Marks,et al.  Low-indium content bilayer transparent conducting oxide thin films as effective anodes in organic photovoltaic cells , 2010 .

[69]  Chang Su Kim,et al.  Indium Oxide Thin-Film Transistors Fabricated by RF Sputtering at Room Temperature , 2010, IEEE Electron Device Letters.

[70]  Tobin J. Marks,et al.  Transparent electronics : from synthesis to applications , 2010 .

[71]  Christoph J. Brabec,et al.  Interface materials for organic solar cells , 2010 .

[72]  Sheng-Fu Horng,et al.  Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer , 2010 .

[73]  Mark A. Ratner,et al.  Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance , 2010 .

[74]  Benjamin D. Yuhas,et al.  Probing compositional variation within hybrid nanostructures. , 2009, ACS nano.

[75]  Liang Fang,et al.  Transparent flexible resistive random access memory fabricated at room temperature , 2009 .

[76]  Wolfgang Kowalsky,et al.  Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films , 2009 .

[77]  H. N. Lee,et al.  Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures , 2009, 0908.1358.

[78]  Seunghyup Yoo,et al.  Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes , 2009 .

[79]  Jong-Wan Park,et al.  Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator , 2009 .

[80]  Hideo Hosono,et al.  Origins of threshold voltage shifts in room-temperature deposited and annealed a-In–Ga–Zn–O thin-film transistors , 2009 .

[81]  T. Kamiya,et al.  Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping* , 2009, Journal of Display Technology.

[82]  Paul H. Wöbkenberg,et al.  High‐Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere , 2009 .

[83]  Peng Zhou,et al.  Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode , 2009 .

[84]  Jung-Hyun Lee,et al.  Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. , 2009, Nano letters.

[85]  Y. Liu,et al.  Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices , 2009 .

[86]  Pedro Barquinha,et al.  Toward High-Performance Amorphous GIZO TFTs , 2009 .

[87]  Zuxun Zhang,et al.  Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors , 2009, Nanotechnology.

[88]  Guo-Qiang Lo,et al.  An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .

[89]  Hideo Hosono,et al.  Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor , 2008 .

[90]  Pedro Barquinha,et al.  Write-erase and read paper memory transistor , 2008 .

[91]  Tobin J. Marks,et al.  High performance solution-processed indium oxide thin-film transistors. , 2008, Journal of the American Chemical Society.

[92]  N. Kikuchi,et al.  Fabrication of ZnO and CUCrO2:Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes , 2008 .

[93]  Hideo Hosono,et al.  p-channel thin-film transistor using p-type oxide semiconductor, SnO , 2008 .

[94]  J. Knights Substitutional doping in amorphous silicon , 2008 .

[95]  Tadatsugu Minami,et al.  Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes , 2008 .

[96]  J. Rogers,et al.  Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates , 2008, Nature.

[97]  Alex K.-Y. Jen,et al.  Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer , 2008 .

[98]  Hideo Hosono,et al.  Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy , 2008 .

[99]  Gang Li,et al.  Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer , 2008 .

[100]  Costas P. Grigoropoulos,et al.  ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process , 2008 .

[101]  Hideo Hosono,et al.  Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states , 2008 .

[102]  Robert P. H. Chang,et al.  p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells , 2008, Proceedings of the National Academy of Sciences.

[103]  Jin Young Kim,et al.  Air‐Stable Polymer Electronic Devices , 2007 .

[104]  Jun Liu,et al.  Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. , 2007, Nature nanotechnology.

[105]  Seok-Jin Yoon,et al.  The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition , 2007 .

[106]  Yu-Jen Chang,et al.  A General Route to Printable High‐Mobility Transparent Amorphous Oxide Semiconductors , 2007 .

[107]  Yuning Li,et al.  Stable, solution-processed, high-mobility ZnO thin-film transistors. , 2007, Journal of the American Chemical Society.

[108]  A. Facchetti,et al.  High-performance transparent inorganic–organic hybrid thin-film n-type transistors , 2006, Nature materials.

[109]  Sean E. Shaheen,et al.  Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .

[110]  T. Kamiya,et al.  High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering , 2006 .

[111]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[112]  Vishal Shrotriya,et al.  Transition metal oxides as the buffer layer for polymer photovoltaic cells , 2006 .

[113]  Henning Sirringhaus,et al.  Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. , 2005, Nano letters.

[114]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[115]  Peidong Yang,et al.  ZnO nanowire transistors. , 2005, The journal of physical chemistry. B.

[116]  B. Raveau,et al.  Antimony and Antimony—Tin Doped Indium Oxide, IAO and IATO: Promising Transparent Conductors. , 2005 .

[117]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[118]  C. L. Munsee,et al.  Tin oxide transparent thin-film transistors , 2004 .

[119]  B. Raveau,et al.  Antimony and antimony–tin doped indium oxide, IAO and IATO: promising transparent conductors , 2004 .

[120]  A. Ohtomo,et al.  Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga , 2004, cond-mat/0406211.

[121]  M. Meyyappan,et al.  Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor , 2004 .

[122]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[123]  C. Raggi,et al.  Mini review , 2004 .

[124]  M. Ivanovskaya,et al.  Influence of chemical composition and structural factors of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol☆ , 2003 .

[125]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[126]  R. McLean,et al.  Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering , 2003 .

[127]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[128]  Phaedon Avouris,et al.  Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts , 2003 .

[129]  Yasutaka Takahashi,et al.  Thin Film Transistor of ZnO Fabricated by Chemical Solution Deposition , 2001 .

[130]  Hideo Hosono,et al.  Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions , 2000 .

[131]  Hideo Hosono,et al.  Chemical Design and Thin Film Preparation of p-Type Conductive Transparent Oxides , 2000 .

[132]  H. Hosono,et al.  SrCu2O2: A p-type conductive oxide with wide band gap , 1998 .

[133]  N. Bârsan,et al.  In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3 , 1998 .

[134]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[135]  Yukio Watanabe Epitaxial all‐perovskite ferroelectric field effect transistor with a memory retention , 1995 .

[136]  Akira Aoki,et al.  Tin Oxide Thin Film Transistors , 1970 .

[137]  H. A. Klasens,et al.  A tin oxide field-effect transistor , 1964 .

[138]  J. Stanworth,et al.  Vanadate Glasses , 1954, Nature.