Quantified CTL: Expressiveness and Model Checking - (Extended Abstract)

While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics) and characterize the complexity of its model-checking problem, depending on the number of nested propositional quantifiers (showing that the structure semantics populates the polynomial hierarchy while the tree semantics populates the exponential hierarchy). We also show how these results apply to model checking ATL-like temporal logics for games.

[1]  Markus Stumptner,et al.  AI 2001: Advances in Artificial Intelligence , 2002, Lecture Notes in Computer Science.

[2]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[3]  Mohamed Nassim Seghir,et al.  A Lightweight Approach for Loop Summarization , 2011, ATVA.

[4]  Anirban Dasgupta,et al.  Quantified Computation Tree Logic , 2002, Inf. Process. Lett..

[5]  Arnaud Da Costa Lopes,et al.  Quantified CTL: Expressiveness and Model Checking - (Extended Abstract) , 2012, CONCUR.

[6]  J. Engelfriet,et al.  Graph Structure and Monadic Second-Order Logic: Monadic second-order logic , 2012 .

[7]  Krishnendu Chatterjee,et al.  Strategy logic , 2007, Inf. Comput..

[8]  Orna Kupferman,et al.  Weak alternating automata and tree automata emptiness , 1998, STOC '98.

[9]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[10]  Anil Nerode,et al.  Logical Foundations of Computer Science, International Symposium, LFCS 2009, Deerfield Beach, FL, USA, January 3-6, 2009. Proceedings , 1994, LFCS.

[11]  Georg Gottlob NP trees and Carnap's modal logic , 1995, JACM.

[12]  Nicolas Markey,et al.  ATL with Strategy Contexts and Bounded Memory , 2009, LFCS.

[13]  Sophie Pinchinat,et al.  Quantified Mu-Calculus for Control Synthesis , 2003, MFCS.

[14]  David E. Muller,et al.  Simulating Alternating Tree Automata by Nondeterministic Automata: New Results and New Proofs of the Theorems of Rabin, McNaughton and Safra , 1995, Theor. Comput. Sci..

[15]  E. Muller David,et al.  Alternating automata on infinite trees , 1987 .

[16]  Kim G. Larsen,et al.  On Modal Refinement and Consistency , 2007, CONCUR.

[17]  Joseph Sifakis,et al.  Specification and verification of concurrent systems in CESAR , 1982, Symposium on Programming.

[18]  Farn Wang,et al.  A Temporal Logic for the Interaction of Strategies , 2011, CONCUR.

[19]  Ugo Montanari,et al.  International Symposium on Programming , 1982, Lecture Notes in Computer Science.

[20]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[21]  Tim French Decidability of Quantifed Propositional Branching Time Logics , 2001, Australian Joint Conference on Artificial Intelligence.

[22]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Appplications to Temporal Logic , 1987, Theor. Comput. Sci..

[23]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[24]  C. Rattray,et al.  Specification and Verification of Concurrent Systems , 1990, Workshops in Computing.

[25]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[26]  David E. Muller,et al.  Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..

[27]  Parosh Aziz Abdulla,et al.  Advanced Ramsey-Based Büchi Automata Inclusion Testing , 2011, CONCUR.

[28]  Nicolas Markey,et al.  ATL with Strategy Contexts: Expressiveness and Model Checking , 2010, FSTTCS.

[29]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[30]  Roberto Grossi,et al.  Mathematical Foundations Of Computer Science 2003 , 2003 .

[31]  P. S. Thiagarajan,et al.  Open Systems in Reactive Environments: Control and Synthesis , 2000, CONCUR.

[32]  Amir Pnueli,et al.  A complete proof systems for QPTL , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[33]  Radha Jagadeesan,et al.  Model checking partial state spaces with 3-valued temporal logics , 2001 .

[34]  Sophie Pinchinat A Generic Constructive Solution for Concurrent Games with Expressive Constraints on Strategies , 2007, ATVA.

[35]  Faron Moller,et al.  Counting on CTL*: on the expressive power of monadic path logic , 2003, Inf. Comput..

[36]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[37]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[38]  Jerzy Tiuryn,et al.  Logics of Programs , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[39]  Orna Kupferman Augmenting Branching Temporal Logics with Existential Quantification over Atomic Propositions , 1995, CAV.

[40]  Aravinda Prasad Sistla,et al.  Theoretical issues in the design and verification of distributed systems , 1983 .

[41]  Fabio Mogavero Reasoning About Strategies , 2013, FSTTCS 2013.

[42]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[43]  A. Prasad Sistla,et al.  Deciding Full Branching Time Logic , 1985, Inf. Control..

[44]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[45]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[46]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Applications to Temporal Logic (Extended Abstract) , 1985, ICALP.