DRYADLINQ CTP EVALUATION Performance of Key Features and Interfaces in DryadLINQ CTP

[1]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[2]  Michael D. Ernst,et al.  HaLoop , 2010, Proc. VLDB Endow..

[3]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[4]  Geoffrey C. Fox,et al.  Architecture and performance of runtime environments for data intensive scalable computing , 2010 .

[5]  S. Group Applicability of DryadLINQ to Scientific Applications , 2010 .

[6]  Tak-Lon Wu,et al.  Cloud computing paradigms for pleasingly parallel biomedical applications , 2011, Concurr. Comput. Pract. Exp..

[7]  G. C. Fox,et al.  What have we learnt from using real parallel machines to solve real problems? , 1989, C3P.

[8]  Geoffrey C. Fox,et al.  Matrix algorithms on a hypercube I: Matrix multiplication , 1987, Parallel Comput..

[9]  Geoffrey C. Fox,et al.  MapReduce for Data Intensive Scientific Analyses , 2008, 2008 IEEE Fourth International Conference on eScience.

[10]  Joseph M. Hellerstein,et al.  Online aggregation and continuous query support in MapReduce , 2010, SIGMOD Conference.

[11]  Geoffrey C. Fox,et al.  Dimension reduction and visualization of large high-dimensional data via interpolation , 2010, HPDC '10.

[12]  Tak-Lon Wu,et al.  Portable Parallel Programming on Cloud and HPC: Scientific Applications of Twister4Azure , 2011, 2011 Fourth IEEE International Conference on Utility and Cloud Computing.

[13]  Hui Li,et al.  Design patterns for scientific applications in DryadLINQ CTP , 2011, DataCloud-SC '11.

[14]  Fusheng Wang,et al.  YSmart: Yet Another SQL-to-MapReduce Translator , 2011, 2011 31st International Conference on Distributed Computing Systems.

[15]  Gordon Bell,et al.  Beyond the Data Deluge , 2009, Science.

[16]  Michael Isard,et al.  Distributed aggregation for data-parallel computing: interfaces and implementations , 2009, SOSP '09.

[17]  O. Gotoh An improved algorithm for matching biological sequences. , 1982, Journal of molecular biology.

[18]  Robert L. Grossman,et al.  Sector and Sphere: the design and implementation of a high-performance data cloud , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Beng Chin Ooi,et al.  The performance of MapReduce , 2010, Proc. VLDB Endow..

[20]  Jignesh M. Patel,et al.  A comparison of join algorithms for log processing in MaPreduce , 2010, SIGMOD Conference.

[21]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[22]  M. Batzer,et al.  Alu repeats and human genomic diversity , 2002, Nature Reviews Genetics.

[23]  Seokyong Hong,et al.  Efficient processing of RDF graph pattern matching on MapReduce platforms , 2011, DataCloud-SC '11.

[24]  Yuan Yu,et al.  Dryad: distributed data-parallel programs from sequential building blocks , 2007, EuroSys '07.

[25]  Geoffrey C. Fox,et al.  Twister: a runtime for iterative MapReduce , 2010, HPDC '10.

[26]  S. Lennart Johnsson,et al.  Matrix multiplication on the connection machine , 1989, Proceedings of the 1989 ACM/IEEE Conference on Supercomputing (Supercomputing '89).

[27]  Judy Qiu Generalizing mapreduce as a unified cloud and HPC runtime , 2011, PDAC '11.

[28]  Michael Isard,et al.  DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language , 2008, OSDI.