Minimisation of Multiplicity Tree Automata

We consider the problem of minimising the number of states in a multiplicity tree automaton over the field of rational numbers. We give a minimisation algorithm that runs in polynomial time assuming unit-cost arithmetic. We also show that a polynomial bound in the standard Turing model would require a breakthrough in the complexity of polynomial identity testing by proving that the latter problem is logspace equivalent to the decision version of minimisation. The developed techniques also improve the state of the art in multiplicity word automata: we give an NC algorithm for minimising multiplicity word automata. Finally, we consider the minimal consistency problem: does there exist an automaton with n states that is consistent with a given finite sample of weight-labelled words or trees? We show that this decision problem is complete for the existential theory of the rationals, both for words and for trees of a fixed alphabet rank.

[1]  Oscar H. Ibarra,et al.  A Note on the Parallel Complexity of Computing the Rank of Order n Matrices , 1980, Inf. Process. Lett..

[2]  Helmut Seidl Deciding Equivalence of Finite Tree Automata , 1990, SIAM J. Comput..

[3]  Walter S. Brainerd,et al.  The Minimalization of Tree Automata , 1968, Inf. Control..

[4]  Joël Ouaknine,et al.  On the Complexity of Equivalence and Minimisation for Q-weighted Automata , 2013, Log. Methods Comput. Sci..

[5]  Mehryar Mohri,et al.  On the Computation of Some Standard Distances Between Probabilistic Automata , 2006, CIAA.

[6]  Rémi Gilleron,et al.  Residual Finite Tree Automata , 2003, Developments in Language Theory.

[7]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[8]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[9]  Jack W. Carlyle,et al.  Realizations by Stochastic Finite Automata , 1971, J. Comput. Syst. Sci..

[10]  Symeon Bozapalidis,et al.  Représentations Matricielles Des Séries D'Arbre Reconnaissables , 1989, RAIRO Theor. Informatics Appl..

[11]  Symeon Bozapalidis,et al.  The Rank of a Formal Tree Power Series , 1983, Theor. Comput. Sci..

[12]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[13]  Thanases Pheidas,et al.  Hilbert's Tenth Problem for fields of rational functions over finite fields , 1991 .

[14]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[15]  Jean Berstel,et al.  Recognizable Formal Power Series on Trees , 1982, Theor. Comput. Sci..

[16]  Stefan Kiefer,et al.  Stability and Complexity of Minimising Probabilistic Automata , 2014, ICALP.

[17]  Andreas Maletti Minimizing deterministic weighted tree automata , 2009, Inf. Comput..

[18]  John W. Woods,et al.  Digital Image Compression , 2012 .

[19]  James Worrell,et al.  Complexity of equivalence and learning for multiplicity tree automata , 2014, J. Mach. Learn. Res..

[20]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[21]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[22]  Björn Borchardt,et al.  A Pumping Lemma and Decidability Problems for Recognizable Tree Series , 2004, Acta Cybern..

[23]  E. Mark Gold,et al.  Complexity of Automaton Identification from Given Data , 1978, Inf. Control..

[24]  Jason Eisner,et al.  Simpler and More General Minimization for Weighted Finite-State Automata , 2003, NAACL.

[25]  Stefan Kiefer,et al.  Minimisation of Multiplicity Tree Automata , 2014 .

[26]  Fernando Pereira,et al.  Weighted Automata in Text and Speech Processing , 2005, ArXiv.

[27]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[28]  Dung T. Huynh,et al.  The Parallel Complexity of Finite-State Automata Problems , 1992, Inf. Comput..

[29]  Symeon Bozapalidis Effective construction of the syntactic algebra of a recognizable series on trees , 2005, Acta Informatica.

[30]  Mikel L. Forcada,et al.  An Implementation of Deterministic Tree Automata Minimization , 2007, CIAA.

[31]  L. Csanky,et al.  Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[32]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[33]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[34]  Wen-Guey Tzeng,et al.  A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata , 1992, SIAM J. Comput..

[35]  José Oncina,et al.  Learning Multiplicity Tree Automata , 2006, ICGI.

[36]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[37]  Peter Bro Miltersen,et al.  2 The Task of a Numerical Analyst , 2022 .