Rheological Properties of Cartilage Glycosaminoglycans and Proteoglycans

Glycosaminoglycans (GAGs) are molecules that govern the load-bearing and frictional properties of cartilage and the lubricating properties of synovial fluid of joints. Most GAGs in the body form pr...

[1]  H. Winter,et al.  Rheology of the Critical Transition State of an Epoxy Vitrimer , 2020, Macromolecules.

[2]  J. Douglas,et al.  Polyelectrolyte association and solvation. , 2018, The Journal of chemical physics.

[3]  J. Douglas Weak and Strong Gels and the Emergence of the Amorphous Solid State , 2018, Gels.

[4]  J. Douglas,et al.  Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution. , 2016, The Journal of chemical physics.

[5]  Guangzhao Zhang,et al.  Insight into dynamics of polyelectrolyte chains in salt-free solutions by laser light scattering and analytical ultracentrifugation , 2014 .

[6]  F. Guilak,et al.  High resistance of the mechanical properties of the chondrocyte pericellular matrix to proteoglycan digestion by chondroitinase, aggrecanase, or hyaluronidase. , 2014, Journal of the mechanical behavior of biomedical materials.

[7]  Christine Ortiz,et al.  Molecular Adhesion between Cartilage Extracellular Matrix Macromolecules , 2014, Biomacromolecules.

[8]  Hongbin Zhang,et al.  Rheological studies of hyaluronan solutions based on the scaling law and constitutive models , 2014 .

[9]  P. Basser,et al.  Chondroitin Sulfate in Solution: Effects of Mono- and Divalent Salts. , 2012, Macromolecules.

[10]  Preethi L. Chandran,et al.  Aggrecan, an unusual polyelectrolyte: review of solution behavior and physiological implications. , 2012, Acta biomaterialia.

[11]  D. Bedrov,et al.  Polypeptide grafted hyaluronan: A self-assembling comb-branched polymer constructed from biological components. , 2011, European polymer journal.

[12]  A. Perico,et al.  Clusters in strong polyelectrolyte solutions in the condensation theory approach. , 2011, The Journal of chemical physics.

[13]  Preethi L. Chandran,et al.  Probing Interactions between Aggrecan and Mica Surface by the Atomic Force Microscopy. , 2010, Journal of polymer science. Part B, Polymer physics.

[14]  A. U. Daniels,et al.  Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: validation with a gel-microfiber composite. , 2010, Biophysical journal.

[15]  P. Basser,et al.  Ions in hyaluronic acid solutions. , 2009, The Journal of chemical physics.

[16]  Jacob Klein,et al.  Lubrication at Physiological Pressures by Polyzwitterionic Brushes , 2009, Science.

[17]  D. Mattison,et al.  Eunice Kennedy Shriver National Institute of Child Health and Human Development Pediatric Formulation Initiative: selected reports from working groups. , 2008, Clinical therapeutics.

[18]  T. Waigh,et al.  The viscoelasticity of self-assembled proteoglycan combs. , 2008, Faraday discussions.

[19]  P. Basser,et al.  Insensitivity to salt of assembly of a rigid biopolymer aggrecan. , 2008, Physical review letters.

[20]  P. Basser,et al.  Gel-like behavior in aggrecan assemblies. , 2008, The Journal of chemical physics.

[21]  Jacob Klein,et al.  Molecular mechanisms of synovial joint lubrication , 2006 .

[22]  T. Waigh,et al.  Solution structure and dynamics of cartilage aggrecan. , 2006, Biomacromolecules.

[23]  P. Basser,et al.  Toward a Constitutive Law of Cartilage: A Polymer Physics Perspective , 2005 .

[24]  Uri Raviv,et al.  Lubrication by charged polymers , 2003, Nature.

[25]  C. McCormick,et al.  Synthesis and solution properties of zwitterionic polymers. , 2002, Chemical reviews.

[26]  A. Jamieson,et al.  Viscoelastic properties of aggrecan aggregate solutions: Dependence on aggrecan concentration and ionic strength , 2002 .

[27]  A. Jamieson,et al.  Nonlinear viscoelasticity of concentrated solutions of aggrecan aggregate. , 2001, Biomacromolecules.

[28]  J. Douglas,et al.  Influence of counterion valency on the scattering properties of highly charged polyelectrolyte solutions , 2001 .

[29]  P J Basser,et al.  Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. , 1998, Archives of biochemistry and biophysics.

[30]  G. Fredrickson The theory of polymer dynamics , 1996 .

[31]  L. Rosenberg,et al.  Viscoelastic and rheological properties of concentrated solutions of proteoglycan subunit and proteoglycan aggregate , 1990, Biopolymers.

[32]  R. Gaylord,et al.  Rubber elasticity: a scaling approach , 1987 .

[33]  J. Larabee,et al.  Phase behaviour and solution properties of sulphobetaine polymers , 1986 .

[34]  V. Soto,et al.  Poly(sulphopropylbetaines): 2. Dilute solution properties , 1984 .

[35]  E. Morris,et al.  Conformation and dynamic interactions in hyaluronate solutions. , 1980, Journal of molecular biology.

[36]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[37]  P. G. de Gennes,et al.  Remarks on entanglements and rubber elasticity , 1974 .

[38]  A. Maroudas,et al.  The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. , 1969, Biochimica et biophysica acta.

[39]  E. Balazs,et al.  Rheology of hyaluronic acid , 1968, Biopolymers.

[40]  S F Edwards,et al.  The statistical mechanics of polymerized material , 1967 .

[41]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .