Parameterization of triangle meshes over quadrilateral domains

We present a method for parameterizing irregularly triangulated input models over polyhedral domains with quadrilateral faces. A combination of center-based clustering techniques is used to generate a partition of the model into regions suitable for remeshing. Several issues are addressed: the size and shape of the regions, their positioning with respect to features of the input geometry, and the amount of distortion introduced by approximating each region with a coarse polygon. Region boundaries are used to define a coarse polygonal mesh which is quadrangulated to obtain a parameterization domain. Constraints can be optionally imposed to enforce a strict correspondence between input and output features. We use the parameterization for multiresolution Catmull-Clark remeshing and we illustrate two applications that take advantage of the resulting representation: interactive model editing and texture mapping.

[1]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[2]  Bernd Hamann,et al.  Automatic Semi-Regular Mesh Construction from Adaptive Distance Fields , 2002 .

[3]  Dinesh Manocha,et al.  Appearance-preserving simplification , 1998, SIGGRAPH.

[4]  Yutaka Ohtake,et al.  Polyhedral surface smoothing with simultaneous mesh regularization , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[5]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[6]  Pedro V. Sander,et al.  Multi-Chart Geometry Images , 2003, Symposium on Geometry Processing.

[7]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.

[8]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[9]  David Eppstein,et al.  Quadrilateral Meshing by Circle Packing , 1999, Int. J. Comput. Geom. Appl..

[10]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[11]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[12]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[13]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[14]  L. Velho QUADRILATERAL MESHING USING 4-8 CLUSTERING , 2000 .

[15]  Michael Garland,et al.  User-guided simplification , 2003, I3D '03.

[16]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[17]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[18]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[19]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[20]  Karsten Weihe,et al.  Minimum strictly convex quadrangulations of convex polygons , 1997, SCG '97.

[21]  Günther Greiner,et al.  Quadrilateral Remeshing , 2000, VMV.

[22]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[23]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[24]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[25]  Andrei Khodakovsky,et al.  Hybrid meshes: multiresolution using regular and irregular refinement , 2002, SCG '02.

[26]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[27]  Holly E. Rushmeier,et al.  The 3D Model Acquisition Pipeline , 2002, Comput. Graph. Forum.

[28]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[29]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[30]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[31]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[32]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[33]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[34]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[35]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[36]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[37]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[38]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[39]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[40]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[41]  Markus H. Gross,et al.  Multiresolution feature extraction for unstructured meshes , 2001, Proceedings Visualization, 2001. VIS '01..

[42]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[43]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..