Stability and stabilization: discontinuities and the effect of disturbances

This expository paper deals with several questions related to stability and stabilization of nonlinear finite-dimensional continuous-time systems. The topics covered include a review of stability and asymptotic controllability, an introduction to the problem of stabilization and obstructions to continuous stabilization, the notion of control-Lyapunov functions, and a discussion of discontinuous feedback and methods of nonsmooth analysis. An emphasis is placed upon relatively new areas of research which concern stability with respect to noise, including the notion of insensitivity to small measurement and actuator errors as well as the more global notion of input-to-state stability.

[1]  Pravin Varaiya,et al.  Bounded-input bounded-output stability of nonlinear time-varying differential systems. , 1966 .

[2]  H. Hermes Discontinuous vector fields and feedback control , 1966 .

[3]  J. Willems Mechanisms for the stability and instability in feedback systems , 1976, Proceedings of the IEEE.

[4]  Otomar Hájek,et al.  Discontinuous differential equations, II , 1979 .

[5]  Eduardo Sontag,et al.  Remarks on continuous feedback , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[6]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[7]  Eduardo Sontag A Lyapunov-Like Characterization of Asymptotic Controllability , 1983, SIAM Journal on Control and Optimization.

[8]  Z. Artstein Stabilization with relaxed controls , 1983 .

[9]  A. Isidori Nonlinear Control Systems , 1985 .

[10]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[11]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[12]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[13]  Xiaoming Hu On state observers for nonlinear systems , 1991 .

[14]  D. Hill,et al.  Dissipative nonlinear systems: basic properties and stability analysis , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[15]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[16]  Eduardo Sontag,et al.  Remarks on control Lyapunov functions for discontinuous stabilizing feedback , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[17]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[18]  E. Ryan On Brockett's Condition for Smooth Stabilizability and its Necessity in a Context of Nonsmooth Feedback , 1994 .

[19]  Eduardo Sontag,et al.  Changing supply functions in input/state stable systems , 1995, IEEE Trans. Autom. Control..

[20]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[21]  Eduardo Sontag,et al.  Nonsmooth control-Lyapunov functions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[22]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[23]  Wei-Min Lu A class of globally stabilizing controllers for nonlinear systems , 1995 .

[24]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[25]  Wu-Sheng Lu,et al.  On robust stability of 2-D discrete systems , 1995, IEEE Trans. Autom. Control..

[26]  Wei-Min Lu A state-space approach to parameterization of stabilizing controllers for nonlinear systems , 1995, IEEE Trans. Autom. Control..

[27]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[28]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[29]  A. Teel,et al.  Singular perturbations and input-to-state stability , 1996, IEEE Trans. Autom. Control..

[30]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[31]  Yuan Wang,et al.  Stabilization in spite of matched unmodeled dynamics and an equivalent definition of input-to-state stability , 1996, Math. Control. Signals Syst..

[32]  A. Isidori Global almost disturbance decoupling with stability for non minimum-phase single-input single-output , 1996 .

[33]  Mrdjan Jankovic,et al.  Integrator forwarding: A new recursive nonlinear robust design , 1997, Autom..

[34]  Eduardo Sontag,et al.  A notion of input to output stability , 1997, 1997 European Control Conference (ECC).

[35]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[36]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[37]  J. Tsinias Input to state stability properties of nonlinear systems and applications to bounded feedback stabilization using saturation , 1997 .

[38]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[39]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[40]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[41]  Eduardo D. Sontag,et al.  Stabilization under measurement noise: Lyapunov characterization , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[42]  Yu. S. Ledyaev,et al.  A Lyapunov characterization of robust stabilization , 1999 .

[43]  Stefano Battilotti,et al.  Robust stabilization of nonlinear systems with pointwise norm-bounded uncertainties: a control Lyapunov function approach , 1999, IEEE Trans. Autom. Control..

[44]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[45]  Eduardo D. Sontag,et al.  Input-Output-to-State Stability , 2001, SIAM J. Control. Optim..

[46]  A REMARK ON ROBUST STABILIZATION OF GENERAL ASYMPTOTICALLY CONTROLLABLE SYSTEMS , .