Softness, sleekness and regularity properties in nonsmooth analysis

Abstract We study continuity properties of tangent and normal cones to a closed subset of a Banach space. Such a study can be seen as a nonsmooth set theoretic analogue of the study of continuously differentiable functions. We give particular attention to the case where different concepts coincide, a desirable feature such properties are able to offer. We identify a wide class of sets and functions for which this property occurs.

[1]  M. Guignard Generalized Kuhn–Tucker Conditions for Mathematical Programming Problems in a Banach Space , 1969 .

[2]  Adrian S. Lewis,et al.  Approximating Subdifferentials by Random Sampling of Gradients , 2002, Math. Oper. Res..

[3]  Aris Daniilidis,et al.  Approximate convexity and submonotonicity , 2004 .

[4]  Jonathan M. Borwein,et al.  Existence Of Nearest Points In Banach Spaces , 1989, Canadian Journal of Mathematics.

[5]  M. Ferris,et al.  On the Clarke subdifferential of the distance function of a closed set , 1992 .

[6]  R. Correa,et al.  Tangentially continuous directional derivatives in nonsmooth analysis , 1989 .

[7]  Scalarization of Tangential Regularity of Set-Valued Mappings , 1999 .

[8]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[9]  A. D. Ioffe Subdifferentiability spaces and nonsmooth analysis , 1984 .

[10]  A. Kruger Properties of generalized differentials , 1985 .

[11]  Jonathan M. Borwein,et al.  Directionally Lipschitzian Mappings on Baire Spaces , 1984, Canadian Journal of Mathematics.

[12]  Huynh van Ngai,et al.  A Fuzzy Necessary Optimality Condition for Non-Lipschitz Optimization in Asplund Spaces , 2002, SIAM J. Optim..

[13]  Horst Martini,et al.  Star-shaped sets in normed spaces , 1996, Discret. Comput. Geom..

[14]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[15]  Philippe Michel,et al.  A generalized derivative for calm and stable functions , 1992, Differential and Integral Equations.

[16]  Lionel Thibault,et al.  Sub differential Monotonicity as Characterization of Convex Functions , 1994 .

[17]  Jean-Philippe Vial,et al.  Strong and Weak Convexity of Sets and Functions , 1983, Math. Oper. Res..

[18]  V. F. Dem'yanov The Rise of Nonsmooth Analysis: Its Main Tools , 2002 .

[19]  Jean Paul Penot A characterization of Clarke’s strict tangent cone via nonlinear semigroups , 1985 .

[20]  F. Clarke,et al.  Proximal Smoothness and the Lower{C 2 Property , 1995 .

[21]  Vladimir V. Goncharov,et al.  Variational Inequalities and Regularity Properties of Closed Sets in Hilbert Spaces , 1999 .

[22]  Vladimir F. Demyanov,et al.  Hunting for a Smaller Convex Subdifferential , 1997, J. Glob. Optim..

[23]  Francis Conrad,et al.  Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback , 1993 .

[24]  G. Lebourg,et al.  Generic differentiability of Lipschitzian functions , 1979 .

[25]  J. Penot What is quasiconvex analysis? , 2000 .

[26]  Jonathan M. Borwein,et al.  A note on regularity of sets and of distance functions in Banach space , 1994 .

[27]  Alberto Zaffaroni,et al.  Is every radiant function the sum of quasiconvex functions? , 2004, Math. Methods Oper. Res..

[28]  A. Ioffe Proximal Analysis and Approximate Subdifferentials , 1990 .

[29]  R. Correa,et al.  Some properties of semismooth and regular functions in nonsmooth analysis , 1986 .

[30]  D. Zagbodny,et al.  A note on the equivalence between the mean value theorem for the dim derivative and the Clarke-Rockafellar derivative , 1990 .

[31]  M. Bounkhel,et al.  Subdifferential Regularity of Directionally Lipschitzian Functions , 2000, Canadian Mathematical Bulletin.

[32]  S. Rolewicz On the coincidence of some subdifferentials in the class of α(.)-paraconvex functions , 2001 .

[33]  A. Marino,et al.  Some variational problems with lack of convexity and some partial differential inequalities , 1990 .

[34]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[35]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[36]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[37]  J. Penot,et al.  Mean-Value Theorem with Small Subdifferentials , 1997 .

[38]  Lionel Thibault,et al.  On various notions of regularity of sets in nonsmooth analysis , 2002 .

[39]  Alexander M. Rubinov,et al.  Minimizing Increasing Star-shaped Functions Based on Abstract Convexity , 1999, J. Glob. Optim..

[40]  Liqun Qi,et al.  Semiregularity and Generalized Subdifferentials with Applications to Optimization , 1993, Math. Oper. Res..

[41]  Jean-Paul Penot A characterization of tangential regularity , 1981 .

[42]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..

[43]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[44]  Mario Tosques,et al.  General properties of (p,q)-convex functions and (p,q)-monotone operators , 1983 .

[45]  Jay S. Treiman,et al.  Clarke’s gradients and epsilon-subgradients in Banach spaces , 1986 .

[46]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[47]  Jonathan M. Borwein,et al.  Proximal analysis and boundaries of closed sets in Banach space, Part I: theory , 1986 .

[48]  Jay S. Treiman Shrinking generalized gradients , 1988 .

[49]  D. Du,et al.  Recent Advances in Nonsmooth Optimization , 1995 .

[50]  J. Penot On regularity conditions in mathematical programming , 1982 .

[51]  D. Goeleven Noncoercive variational problems and related results , 1996 .

[52]  H. Tuy Convex analysis and global optimization , 1998 .

[53]  Jonathan M. Borwein,et al.  Proximal analysis in smooth spaces , 1996 .

[54]  Jean-Paul Penot,et al.  Continuity of the fenchel correspondence and continuity of polarities , 1991 .

[55]  Subdifferential Characterization of Primal Lower-Nice Functions on Smooth Banach Spaces , 2003 .

[56]  R. Rockafellar Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .

[57]  Jonathan M. Borwein,et al.  The proximal normal formula in Banach space , 1987 .

[58]  R. Tyrrell Rockafellar,et al.  Convexity in Hamilton-Jacobi Theory I: Dynamics and Duality , 2000, SIAM J. Control. Optim..

[59]  Philip D. Loewen A mean value theorem for Fre´chet subgradients , 1994 .

[60]  Jean-Paul Penot,et al.  Comparing New Notions of Tangent Cones , 1989 .

[61]  Roger J.-B. Wets,et al.  Continuity of some convex-cone-valued mappings , 1967 .

[62]  Jean-Paul Penot,et al.  The Compatibility with Order of Some Subdifferentials , 2002 .

[63]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[64]  L. Thibault,et al.  Prox-regular functions in Hilbert spaces , 2005 .

[65]  Adrian S. Lewis,et al.  Estimating Tangent and Normal Cones Without Calculus , 2005, Math. Oper. Res..

[66]  Jean-Paul Penot,et al.  Unilateral Analysis and Duality , 2005 .

[67]  Jonathan M. Borwein,et al.  The differentiability of real functions on normed linear space using generalized subgradients , 1987 .

[68]  H. Ngai,et al.  Approximately convex functions and approximately monotonic operators , 2007 .

[69]  A. Daniilidis,et al.  Subsmooth sets: Functional characterizations and related concepts , 2004 .

[70]  Michel Théra,et al.  Metric Inequality, Subdifferential Calculus and Applications , 2001 .

[71]  A. Ioffe,et al.  ON SUBDIFFERENTIABILITY SPACES , 1983 .

[72]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .