Exceptional circles of radial potentials
暂无分享,去创建一个
[1] S. Novikov,et al. Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state , 1988 .
[2] Искандер Асанович Тайманов,et al. Двумерные операторы Шрeдингера с быстро убывающим рациональным потенциалом и многомерным $L_2$-ядром@@@Two-dimensional Schrödinger operators with fast decaying potential and multidimensional $L_2$-kernel , 2007 .
[3] David Isaacson,et al. Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms , 1991 .
[4] A. Mariotti,et al. Bipartite field theories, cluster algebras and the Grassmannian , 2014, 1404.3752.
[5] A. Nachman,et al. Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .
[6] Matti Lassas,et al. The Novikov–Veselov equation and the inverse scattering method, Part I: Analysis , 2011, 1105.3903.
[7] R. Novikov,et al. A multidimensional inverse problem in quantum and acoustic scattering , 1988 .
[8] S. Siltanen,et al. Mapping Properties of the Nonlinear Fourier Transform in Dimension Two , 2007 .
[9] J. Leon,et al. On a spectral transform of a KDV-like equation related to the Schrodinger operator in the plane , 1987 .
[10] I. Taimanov,et al. Two-dimensional rational solitons and their blowup via the moutard transformation , 2008, 0801.3225.
[11] I. Taimanov,et al. Blowing up solutions of the Novikov-Veselov equation , 2008 .
[12] Kari Astala,et al. Calderon's inverse conductivity problem in the plane , 2006 .
[13] R. Novikov,et al. Faddeev eigenfunctions for point potentials in two dimensions , 2011, 1110.3157.
[14] John Sylvester,et al. A uniqueness theorem for an inverse boundary value problem in electrical prospection , 1986 .
[15] M. Hanke,et al. Convex source support in three dimensions , 2012 .
[16] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[17] Matti Lassas,et al. REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .
[18] W. Allegretto. On the equivalence of two types of oscillation for elliptic operators , 1974 .
[19] The Miura map on the line , 2005, math/0506411.
[20] P. Perry,et al. Miura maps and inverse scattering for the Novikov–Veselov equation , 2012, 1201.2385.
[21] D. Isaacson,et al. An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .
[22] M. Murata. Structure of positive solutions to (−Δ+V) u=0 in Rn , 1986 .
[23] W. Allegretto. Positive solutions of elliptic operators in unbounded domains , 1981 .
[24] I. Vekua. Generalized Analytic Functions , 1962 .
[25] F. Gesztesy,et al. On Positive Solutions of Critical Schrödinger Operators in Two Dimensions , 1995 .
[26] I. Taimanov,et al. Two-dimensional Schrödinger operators with fast decaying potential and multidimensional $ L_2$-kernel , 2007, 0706.3595.
[27] I. Taimanov,et al. On the Moutard transformation and its applications to spectral theory and Soliton equations , 2010 .
[28] The Schrodinger operator in the plane , 1993 .
[29] William F. Moss,et al. Positive solutions of elliptic equations. , 1978 .