Exceptional circles of radial potentials

A nonlinear scattering transform is studied for the two-dimensional Schr?dinger equation at zero energy with a radial potential. Explicit examples are presented, both theoretically and computationally, of potentials with nontrivial singularities in the scattering transform. The singularities arise from non-uniqueness of the complex geometric optics solutions that define the scattering transform. The values of the complex spectral parameter at which the singularities appear are called exceptional points. The singularity formation is closely related to the fact that potentials of conductivity type are ?critical? in the sense of Murata.

[1]  S. Novikov,et al.  Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state , 1988 .

[2]  Искандер Асанович Тайманов,et al.  Двумерные операторы Шрeдингера с быстро убывающим рациональным потенциалом и многомерным $L_2$-ядром@@@Two-dimensional Schrödinger operators with fast decaying potential and multidimensional $L_2$-kernel , 2007 .

[3]  David Isaacson,et al.  Effects of measurement precision and finite numbers of electrodes on linear impedance imaging algorithms , 1991 .

[4]  A. Mariotti,et al.  Bipartite field theories, cluster algebras and the Grassmannian , 2014, 1404.3752.

[5]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[6]  Matti Lassas,et al.  The Novikov–Veselov equation and the inverse scattering method, Part I: Analysis , 2011, 1105.3903.

[7]  R. Novikov,et al.  A multidimensional inverse problem in quantum and acoustic scattering , 1988 .

[8]  S. Siltanen,et al.  Mapping Properties of the Nonlinear Fourier Transform in Dimension Two , 2007 .

[9]  J. Leon,et al.  On a spectral transform of a KDV-like equation related to the Schrodinger operator in the plane , 1987 .

[10]  I. Taimanov,et al.  Two-dimensional rational solitons and their blowup via the moutard transformation , 2008, 0801.3225.

[11]  I. Taimanov,et al.  Blowing up solutions of the Novikov-Veselov equation , 2008 .

[12]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[13]  R. Novikov,et al.  Faddeev eigenfunctions for point potentials in two dimensions , 2011, 1110.3157.

[14]  John Sylvester,et al.  A uniqueness theorem for an inverse boundary value problem in electrical prospection , 1986 .

[15]  M. Hanke,et al.  Convex source support in three dimensions , 2012 .

[16]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[17]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[18]  W. Allegretto On the equivalence of two types of oscillation for elliptic operators , 1974 .

[19]  The Miura map on the line , 2005, math/0506411.

[20]  P. Perry,et al.  Miura maps and inverse scattering for the Novikov–Veselov equation , 2012, 1201.2385.

[21]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[22]  M. Murata Structure of positive solutions to (−Δ+V) u=0 in Rn , 1986 .

[23]  W. Allegretto Positive solutions of elliptic operators in unbounded domains , 1981 .

[24]  I. Vekua Generalized Analytic Functions , 1962 .

[25]  F. Gesztesy,et al.  On Positive Solutions of Critical Schrödinger Operators in Two Dimensions , 1995 .

[26]  I. Taimanov,et al.  Two-dimensional Schrödinger operators with fast decaying potential and multidimensional $ L_2$-kernel , 2007, 0706.3595.

[27]  I. Taimanov,et al.  On the Moutard transformation and its applications to spectral theory and Soliton equations , 2010 .

[28]  The Schrodinger operator in the plane , 1993 .

[29]  William F. Moss,et al.  Positive solutions of elliptic equations. , 1978 .