Near-Optimal Quantum Coreset Construction Algorithms for Clustering

$k$-Clustering in $\mathbb{R}^d$ (e.g., $k$-median and $k$-means) is a fundamental machine learning problem. While near-linear time approximation algorithms were known in the classical setting for a dataset with cardinality $n$, it remains open to find sublinear-time quantum algorithms. We give quantum algorithms that find coresets for $k$-clustering in $\mathbb{R}^d$ with $\tilde{O}(\sqrt{nk}d^{3/2})$ query complexity. Our coreset reduces the input size from $n$ to $\mathrm{poly}(k\epsilon^{-1}d)$, so that existing $\alpha$-approximation algorithms for clustering can run on top of it and yield $(1 + \epsilon)\alpha$-approximation. This eventually yields a quadratic speedup for various $k$-clustering approximation algorithms. We complement our algorithm with a nearly matching lower bound, that any quantum algorithm must make $\Omega(\sqrt{nk})$ queries in order to achieve even $O(1)$-approximation for $k$-clustering.

[1]  A. Berti,et al.  Quantum Clustering with k-Means: a Hybrid Approach , 2022, ArXiv.

[2]  Kasper Green Larsen,et al.  Improved Coresets for Euclidean k-Means , 2022, NeurIPS.

[3]  Robert Krauthgamer,et al.  The Power of Uniform Sampling for Coresets , 2022, 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS).

[4]  Jason Li,et al.  On the Fixed-Parameter Tractability of Capacitated Clustering , 2022, ICALP.

[5]  Yassine Hamoudi Preparing Many Copies of a Quantum State in the Black-Box Model , 2022, Physical Review A.

[6]  M. Charikar,et al.  Polylogarithmic Sketches for Clustering , 2022, ICALP.

[7]  Kasper Green Larsen,et al.  Towards optimal lower bounds for k-median and k-means coresets , 2022, STOC.

[8]  David Saulpic,et al.  A new coreset framework for clustering , 2021, STOC.

[9]  Shouvanik Chakrabarti,et al.  Sublinear classical and quantum algorithms for general matrix games , 2020, AAAI.

[10]  Iordanis Kerenidis,et al.  Quantum spectral clustering , 2020, Physical Review A.

[11]  Robert Krauthgamer,et al.  Coresets for Clustering in Excluded-minor Graphs and Beyond , 2020, SODA.

[12]  Nisheeth K. Vishnoi,et al.  Coresets for clustering in Euclidean spaces: importance sampling is nearly optimal , 2020, STOC.

[13]  Sagar Kale,et al.  Fully-Dynamic Coresets , 2020, ESA.

[14]  Ronald de Wolf,et al.  Quantum Speedup for Graph Sparsification, Cut Approximation and Laplacian Solving , 2019, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[15]  Tongyang Li,et al.  Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing Quantum machine learning , 2019, STOC.

[16]  Shouvanik Chakrabarti,et al.  Sublinear quantum algorithms for training linear and kernel-based classifiers , 2019, ICML.

[17]  David Saulpic,et al.  Near-Linear Time Approximation Schemes for Clustering in Doubling Metrics , 2018, J. ACM.

[18]  Iordanis Kerenidis,et al.  q-means: A quantum algorithm for unsupervised machine learning , 2018, NeurIPS.

[19]  David P. Woodruff,et al.  Strong Coresets for k-Median and Subspace Approximation: Goodbye Dimension , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[20]  Iordanis Kerenidis,et al.  Quantum classification of the MNIST dataset via Slow Feature Analysis , 2018, ArXiv.

[21]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[22]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[23]  Silvio Lattanzi,et al.  Fair Clustering Through Fairlets , 2018, NIPS.

[24]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[25]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[26]  Vladimir Braverman,et al.  Clustering High Dimensional Dynamic Data Streams , 2017, ICML.

[27]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[28]  Cristian Romero García,et al.  Quantum Machine Learning , 2017, Encyclopedia of Machine Learning and Data Mining.

[29]  Ashish Kapoor,et al.  Quantum Perceptron Models , 2016, NIPS.

[30]  Ben Reichardt,et al.  Span Programs are Equivalent to Quantum Query Algorithms , 2014, SIAM J. Comput..

[31]  Ashish Kapoor,et al.  Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning , 2014, Quantum Inf. Comput..

[32]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[33]  Michael Langberg,et al.  A unified framework for approximating and clustering data , 2011, STOC.

[34]  S. Kimmel Quantum Adversary (Upper) Bound , 2011, Chic. J. Theor. Comput. Sci..

[35]  Troy Lee,et al.  Quantum Query Complexity of State Conversion , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[36]  Steve Mullett,et al.  Read the fine print. , 2009, RN.

[37]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[38]  Gilles Brassard,et al.  Quantum clustering algorithms , 2007, ICML '07.

[39]  P. Høyer,et al.  Negative weights make adversaries stronger , 2006, STOC '07.

[40]  Sariel Har-Peled,et al.  On coresets for k-means and k-median clustering , 2004, STOC '04.

[41]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[42]  C. Greg Plaxton,et al.  Optimal Time Bounds for Approximate Clustering , 2002, Machine Learning.

[43]  Mikkel Thorup,et al.  Quick k-Median, k-Center, and Facility Location for Sparse Graphs , 2001, SIAM J. Comput..

[44]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[45]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[46]  Felix Wu,et al.  The quantum query complexity of approximating the median and related statistics , 1998, STOC '99.

[47]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[48]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[49]  Nimrod Megiddo,et al.  On the Complexity of Some Common Geometric Location Problems , 1984, SIAM J. Comput..

[50]  Joran van Apeldoorn Quantum Probability Oracles & Multidimensional Amplitude Estimation , 2021, TQC.

[51]  Umesh R. Hodeghatta,et al.  Unsupervised Machine Learning , 2017 .

[52]  Maria-Florina Balcan,et al.  Distributed k-means and k-median clustering on general communication topologies , 2013, NIPS.

[53]  Cecilia M. Procopiuc,et al.  Exact and Approximation Algorithms for Clustering , 2001, Algorithmica.

[54]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .