Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review

This review focuses on the protonic/superprotonic electrolytes used for application in direct methanol and direct urea/urine fuel cells. Since, methanol has high energy density, which is essential for portable direct methanol fuel cells, and is simpler to store and transport than conventional hydrogen as fuel. However, methanol is not readily available, which makes waste an attractive option as a fuel source, resulting in the development of direct urea fuel cells. Fuel cells that use waste that contains hydrogen, like waste water or urine, are attractive because of their potential to generate energy from low-cost, abundant sources.

[1]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[2]  Hyunwoong Park,et al.  Electrolysis of urea and urine for solar hydrogen , 2013 .

[3]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[4]  G. Botte,et al.  Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium , 2013 .

[5]  D. Jung,et al.  Performance of a direct methanol polymer electrolyte fuel cell , 1998 .

[6]  P. Gravereau,et al.  Crystal structure and vibrational study of mixed rubidium-caesium hydrogen sulphate Cs0.1Rb0.9HSO4 , 1994 .

[7]  S. Haile,et al.  Examination of the superprotonic transition and dehydration behavior of Cs0.75Rb0.25H2PO4 by thermogravimetric and differential thermal analyses , 2010 .

[8]  W. Yuan,et al.  Moisturized anode and water management in a passive vapor-feed direct methanol fuel cell operated with neat methanol , 2015 .

[9]  Jenny M. Jones,et al.  Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply , 2011 .

[10]  Shimshon Gottesfeld,et al.  High performance direct methanol polymer electrolyte fuel cells , 1996 .

[11]  A. Azad,et al.  High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3–δ , 2008 .

[12]  A. Azad,et al.  Location of Deuterium Positions in the Proton-Conducting Perovskite BaCe0.4Zr0.4Sc0.2O2.90·xD2O by Neutron Powder Diffraction , 2009 .

[13]  Bengt Andersson,et al.  Urea thermolysis studied under flow reactor conditions using DSC and FT-IR , 2009 .

[14]  Saad Mekhilef,et al.  Comparative study of different fuel cell technologies , 2012 .

[15]  A. Basile,et al.  Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review , 2014 .

[16]  Fu-hui Wang,et al.  Application of a composite electrolyte in a solid-acid fuel cell system: A micro-arc oxidation alumina support filled with CsH2PO4 , 2013 .

[17]  Joonhee Moon,et al.  High-temperature phase transformations in LiH2PO4 and possible solid-state polymerization , 2008 .

[18]  Mohammad Reza Rahimpour,et al.  Direct Methanol Fuel Cell , 2018 .

[19]  Mozaffar Abdollahifar,et al.  Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method , 2014 .

[20]  O. Yamamoto Solid oxide fuel cells: fundamental aspects and prospects , 2000 .

[21]  J. Kosek,et al.  Recent advances in PEM liquid-feed direct methanol fuel cells , 1996, Proceedings of 11th Annual Battery Conference on Applications and Advances.

[22]  Jeffrey W. Fergus,et al.  Solid Oxide Fuel Cells : Materials Properties and Performance , 2016 .

[23]  S. Bharadwaj,et al.  Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC , 2012 .

[24]  George A. Olah,et al.  Direct Methanol Fuel Cells , 2004 .

[25]  Siti Kartom Kamarudin,et al.  Materials, morphologies and structures of MEAs in DMFCs , 2012 .

[26]  Hossein Ajamein,et al.  Urea–nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production , 2014 .

[27]  J. Otomo,et al.  Preparation and characterization of proton-conducting CsHSO4–SiO2 nanocomposite electrolyte membranes , 2005 .

[28]  S. Hayashi,et al.  Ammonium ion diffusion in the superprotonic phase of (NH4)3H(SO4)2 as studied by 1H spin-lattice relaxation times in the rotating frame , 2008 .

[29]  Chris Melhuish,et al.  Urine utilisation by microbial fuel cells; energy fuel for the future. , 2012, Physical chemistry chemical physics : PCCP.

[30]  K. Tadanaga,et al.  Characterization of proton conducting CsHSO4–CsH2PO4 ionic glasses prepared by the melt-quenching method , 2010 .

[31]  G. Botte,et al.  Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium , 2012 .

[32]  Hafez Bahrami,et al.  Review and advances of direct methanol fuel cells: Part II: Modeling and numerical simulation , 2013 .

[33]  Ibram Ganesh,et al.  Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review) , 2014 .

[34]  Masashi Koizumi,et al.  Laser-sintered Porous Structures for Samarium-based Solid Oxide Fuel Cells , 2014 .

[35]  O. Deutschmann,et al.  Modeling and simulation of the injection of urea-water-solution for automotive SCR DeNOx-systems , 2007 .

[36]  G. Botte,et al.  Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis , 2011 .

[37]  Eric Croiset,et al.  Performance of ethanol-fuelled solid oxide fuel cells: Proton and oxygen ion conductors , 2007 .

[38]  B. Cook,et al.  Introduction to fuel cells and hydrogen technology , 2002 .

[39]  T. Zhao,et al.  A High Catalyst-Utilization Electrode for Direct Methanol Fuel Cells , 2015 .

[40]  M. Elsener,et al.  Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines , 2000 .

[41]  A. Lim A study of the phase transitions and proton dynamics of the superprotonic conductor Cs5H3(SO4)4·0.5H2O single crystal with 1H and 133Cs nuclear magnetic resonance , 2008 .

[42]  Young Sun Mok,et al.  Decomposition of Urea into NH3 for the SCR Process , 2004 .

[43]  John T. S. Irvine,et al.  Influence of atmosphere on redox structure of BaCe0.9Y0.1O2.95 – Insight from neutron diffraction study , 2014 .

[44]  Wan Ramli Wan Daud,et al.  An overview of fuel management in direct methanol fuel cells , 2013 .

[45]  A. Bondarenko,et al.  Superprotonic conductivity in MH(PO3H) (M = Li+, Na+, K+, Rb+, Cs+, NH4+) , 2008 .

[46]  K. Tadanaga,et al.  Preparation of proton conducting ionic glasses in the systems CsHSO4–MHSO4 (M = Na, K, Rb) , 2010 .

[47]  Y. Matsuo,et al.  Superprotonic and ferroelastic phase transition in K3H(SO4)2 , 2004 .

[48]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[49]  Sossina M. Haile,et al.  Solid acids as fuel cell electrolytes , 2001, Nature.

[50]  N. Zouari,et al.  Synthesis, X-ray structure and thermal behavior of the new superprotonic conductor Cs2(HSeO4)(H2PO4) , 2007 .

[51]  Taegyu Kim,et al.  Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges , 2014 .

[52]  Y. Sohn,et al.  Superprotonic conductivity of (NH4)3H(SO4)2 in the high-temperature phase , 2013 .

[53]  Rong Chen,et al.  The effect of methanol concentration on the performance of a passive DMFC , 2005 .

[54]  Wei Liu,et al.  Samarium and yttrium codoped BaCeO₃ proton conductor with improved sinterability and higher electrical conductivity. , 2014, ACS applied materials & interfaces.

[55]  Koji Yamada,et al.  Superprotonic solid solutions between CsHSO4 and CsH2PO4 , 2008 .

[56]  Rong Chen,et al.  Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells , 2006 .

[57]  J. Otomo,et al.  Phase transition and proton transport characteristics in CsH2PO4/SiO2 composites , 2008 .

[58]  A. Bondarenko,et al.  Superprotonic KH(PO3H)-SiO2 composite electrolyte for intermediate temperature fuel cells , 2009 .

[59]  Grace Ordaz,et al.  The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements , 2007 .

[60]  Seunghun Jung Direct methanol fuel cell with interdigitated anode for operating under ultra-low fuel stoichiometry condition , 2015 .

[61]  John T. S. Irvine,et al.  A direct urea fuel cell – power from fertiliser and waste , 2010 .

[62]  H. Kawashima,et al.  Novel solid acid fuel cell based on a superprotonic conductor Tl3H(SO4)2 , 2004 .

[63]  Deborah J. Jones,et al.  Mixed alkali metal sulfate proton conductors: The structure of Cs0.9Rb0.1HSO4 at room temperature☆ , 1996 .

[64]  A. Matic,et al.  Location of deuteron sites in the proton conducting perovskite BaZr0.50In0.50O3-y , 2008 .

[65]  M. Williams,et al.  Status and Promise of Fuel Cell Technology , 2001 .

[66]  Q. Zhang,et al.  Pr Doped Barium Cerate as the Cathode Material for Proton‐Conducting SOFCs , 2014 .

[67]  S. Haile,et al.  High-Performance Solid Acid Fuel Cells Through Humidity Stabilization , 2004, Science.

[68]  J. Caton,et al.  DECOMPOSITION AND OXIDATION OF A UREA-WATER SOLUTION AS USED IN SELECTIVE NON-CATALYTIC REMOVAL (SNCR) PROCESSES , 2001 .

[69]  N. Maffei,et al.  Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes , 2005 .

[70]  Siti Kartom Kamarudin,et al.  Sensors for direct methanol fuel cells , 2014 .

[71]  Gerardine G Botte,et al.  Urea electrolysis: direct hydrogen production from urine. , 2009, Chemical communications.

[72]  G. Botte,et al.  Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation , 2012 .

[73]  Siti Kartom Kamarudin,et al.  An overview on the production of bio-methanol as potential renewable energy , 2014 .

[74]  Huilin Hou,et al.  A facile preparation of novel Pt-decorated Ti electrode for methanol electro-oxidation by high-energy micro-arc cladding technique , 2013 .

[75]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[76]  Pertti Kauranen,et al.  Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures , 1996 .

[77]  Antonino S. Aricò,et al.  Direct utilization of methanol in solid oxide fuel cells: An electrochemical and catalytic study , 2011 .

[78]  L. Cedola,et al.  Assessment of CO2 Bubble Generation Influence on Direct Methanol Fuel Cell Performance , 2015 .

[79]  S. Takeya,et al.  Phase transition in a superprotonic conductor Cs2(HSO4)(H2PO4) induced by water vapor , 2006 .

[80]  Venkataraman Thangadurai,et al.  Chemically Stable Proton Conducting Doped BaCeO3 -No More Fear to SOFC Wastes , 2013, Scientific Reports.

[81]  F. Henn,et al.  Characterization of Gd, Yb and Nd doped barium cerates as proton conductors , 1993 .

[82]  N. Zouari,et al.  Synthesis, structural study and thermal behaviour of a new superprotonic compound: Cs2(HSeO4)(H2AsO4) , 2009 .

[83]  Liang An,et al.  Carbon-neutral sustainable energy technology: Direct ethanol fuel cells , 2015 .

[84]  A. Boudghene Stambouli,et al.  Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy , 2002 .

[85]  Angelika Heinzel,et al.  A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells , 1999 .

[86]  T. Zhao,et al.  Effect of anode backing layer on the cell performance of a direct methanol fuel cell , 2006 .

[87]  J. Lercher,et al.  Surface chemistry and kinetics of the hydrolysis of isocyanic acid on anatase , 2007 .

[88]  M. Koebel,et al.  Thermal and Hydrolytic Decomposition of Urea for Automotive Selective Catalytic Reduction Systems: Thermochemical and Practical Aspects , 2003 .

[89]  Lim Chee Ming,et al.  Synthesis and Characterization of High Density and Low Temperature Sintered Proton Conductor BaCe0.5Zr0.35In0.1Zn0.05O3-δ , 2015 .

[90]  A. Azad,et al.  Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce,Zr)1−x Scx O3 − δ , 2007 .

[91]  Sossina M. Haile,et al.  High temperature properties of Rb3H(SO4)2 at ambient pressure: Absence of a polymorphic, superprotonic transition , 2008 .

[92]  Umberto Desideri,et al.  SOFC fuelled with reformed urea , 2015 .

[93]  R. Muccillo,et al.  Properties and applications of perovskite proton conductors , 2010 .

[94]  G. Botte,et al.  Hydrogen production via urea electrolysis using a gel electrolyte , 2011 .