Wavelet Amendment of Polynomial Models in Hammerstein Systems Identification

A new wavelet algorithm for on-line improvement of an existing polynomial model of nonlinearity in a Hammerstein system is proposed and its properties are examined. The algorithm employs wavelet bases on interval. Convergence of the resulting assembly, comprising the parametric polynomial model and a nonparametric wavelet add-on, to the system nonlinearity is shown. Rates of convergence for uniformly smooth and piecewise smooth nonlinearities with discontinuities are both established.

[1]  Larry L. Schumaker Wavelets on Closed Subsets of the Real Line , 2007 .

[2]  Miroslav Krstic,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 2001, IEEE Trans. Autom. Control..

[3]  Quang-Cuong Pham A variation of Gronwall's lemma , 2007 .

[4]  Hee-Seok Oh,et al.  Automatic polynomial wavelet regression , 2004, Stat. Comput..

[5]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[6]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[7]  Kwang-Joon Kim,et al.  IDENTIFICATION OF LOUDSPEAKER NONLINEARITIES USING THE NARMAX MODELING TECHNIQUE , 1994 .

[8]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[9]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[10]  J. Voros Identification of Hammerstein systems with time-varying piecewise-linear characteristics , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Robert A. Lordo,et al.  Nonparametric and Semiparametric Models , 2005, Technometrics.

[12]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[13]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[14]  M. Munih,et al.  Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle , 1998, IEEE Transactions on Biomedical Engineering.

[15]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[16]  M. Kupperman Linear Statistical Inference and Its Applications 2nd Edition (C. Radhakrishna Rao) , 1975 .

[17]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[18]  S. Mallat A wavelet tour of signal processing , 1998 .

[19]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[20]  Nicolas Tabareau,et al.  How Synchronization Protects from Noise , 2007, 0801.0011.

[21]  W. Härdle Applied Nonparametric Regression , 1992 .

[22]  Przemyslaw Sliwinski,et al.  Nonparametric identification of nonlinearities in block-oriented systems by orthogonal wavelets with compact support , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  G. Scorletti,et al.  Nonlinear performance of a PI controlled missile: an explanation , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[24]  Miroslaw Pawlak,et al.  Dynamic system identification with order statistics , 1994, IEEE Trans. Inf. Theory.

[25]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[26]  E. Capobianco Hammerstein system represention of financial volatility processes , 2002 .

[27]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[28]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[29]  W. Greblicki,et al.  Non-parametric identification of non-linearity in hammerstein systems , 2003 .

[30]  Zygmunt Hasiewicz,et al.  Nonlinear system identification by the Haar multiresolution analysis , 1998 .

[31]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[32]  R. Luus,et al.  Nonlinear identification in the presence of correlated noise using a Hammerstein model , 1973 .

[33]  W. Greblicki,et al.  Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .

[34]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[35]  Przemyslaw Sliwinski,et al.  Computational Algorithms for Wavelet Identification of Nonlinearities in Hammerstein Systems With Random Inputs , 2008, IEEE Transactions on Signal Processing.

[36]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[37]  Georgios B. Giannakis,et al.  A bibliography on nonlinear system identification , 2001, Signal Process..

[38]  Leszek Rutkowski,et al.  Generalized regression neural networks in time-varying environment , 2004, IEEE Transactions on Neural Networks.

[39]  Zygmunt Hasiewicz,et al.  Hammerstein system identification by non-parametric instrumental variables , 2009, Int. J. Control.

[40]  Jean-Jacques E. Slotine,et al.  Contraction Analysis of Nonlinear Distributed Systems , 2004 .

[41]  Nicolas Tabareau,et al.  Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection , 2008, Neural Networks.

[42]  Zygmunt Hasiewicz,et al.  Combined parametric-nonparametric identification of Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[43]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems , 2006 .

[44]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[45]  M. Niedzwiecki,et al.  Identification of quasi-periodically varying systems using the combined nonparametric/parametric approach , 2005, IEEE Transactions on Signal Processing.

[46]  Thor I. Fossen,et al.  On the combination of nonlinear contracting observers and UGES controllers for output feedback , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[47]  D. Panescu,et al.  A nonlinear electrical-thermal model of the skin , 1994, IEEE Transactions on Biomedical Engineering.

[48]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[49]  Wlodzimierz Greblicki,et al.  Nonlinearity estimation in Hammerstein systems based on ordered observations , 1996, IEEE Trans. Signal Process..

[50]  P. Kloeden,et al.  Exponentially Stable Stationary Solutions for Stochastic Evolution Equations and Their Perturbation , 2004 .

[51]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[52]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[53]  D. Westwick,et al.  Separable Least Squares Identification of Nonlinear Hammerstein Models: Application to Stretch Reflex Dynamics , 2001, Annals of Biomedical Engineering.

[54]  Zygmunt Hasiewicz,et al.  Identification of non-linear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models , 2002, Int. J. Syst. Sci..

[55]  Robert Haber,et al.  Nonlinear system parameter identification , 1999 .

[56]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .