Analysis of Visual Appearance of Retinal Nerve Fibers in High Resolution Fundus Images: A Study on Normal Subjects

The retinal ganglion axons are an important part of the visual system, which can be directly observed by fundus camera. The layer they form together inside the retina is the retinal nerve fiber layer (RNFL). This paper describes results of a texture RNFL analysis in color fundus photographs and compares these results with quantitative measurement of RNFL thickness obtained from optical coherence tomography on normal subjects. It is shown that local mean value, standard deviation, and Shannon entropy extracted from the green and blue channel of fundus images are correlated with corresponding RNFL thickness. The linear correlation coefficients achieved values 0.694, 0.547, and 0.512 for respective features measured on 439 retinal positions in the peripapillary area from 23 eyes of 15 different normal subjects.

[1]  M. Unser,et al.  Interpolation Revisited , 2000, IEEE Trans. Medical Imaging.

[2]  R. Kolář,et al.  Texture Analysis of the Retinal Nerve Fiber Layer in Fundus Images via Markov Random Fields , 2009 .

[3]  H A Quigley,et al.  Examination of the retinal nerve fiber layer in the recognition of early glaucoma damage. , 1986, Transactions of the American Ophthalmological Society.

[4]  P J Airaksinen,et al.  Diffuse and localized nerve fiber loss in glaucoma. , 1984, American journal of ophthalmology.

[5]  J. Hornegger,et al.  Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients , 2010, Biomedical optics express.

[6]  A. Sukesh Kumar,et al.  Early detection of retinal nerve fiber layer defects using fundus image processing , 2011, 2011 IEEE Recent Advances in Intelligent Computational Systems.

[7]  Charles V. Stewart,et al.  A Feature-Based, Robust, Hierarchical Algorithm for Registering Pairs of Images of the Curved Human Retina , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  E. Peli,et al.  Computer measurement of retinal nerve fiber layer striations. , 1989, Applied optics.

[9]  J. Jonas,et al.  Evaluation of the retinal nerve fiber layer. , 1996, Survey of ophthalmology.

[10]  Radim Kolár,et al.  Registration of 3D Retinal Optical Coherence Tomography Data and 2D Fundus Images , 2010, WBIR.

[11]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[12]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[13]  H. Niemann,et al.  Towards automated diagnostic evaluation of retina images , 2006, Pattern Recognition and Image Analysis.

[14]  U. Rajendra Acharya,et al.  Automated Diagnosis of Glaucoma Using Texture and Higher Order Spectra Features , 2011, IEEE Transactions on Information Technology in Biomedicine.

[15]  H. Fujita,et al.  Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma. , 2010, Journal of biomedical optics.

[16]  László G. Nyúl,et al.  Glaucoma risk index:  Automated glaucoma detection from color fundus images , 2010, Medical Image Anal..

[17]  M. Lundström,et al.  COMPUTER DENSITOMETRY OF RETINAL NERVE FIBRE ATROPHY , 1980, Acta ophthalmologica.

[18]  V. Harabis,et al.  Hybrid retinal image registration using phase correlation , 2013 .

[19]  John D. Austin,et al.  Adaptive histogram equalization and its variations , 1987 .

[20]  T. Seppänen,et al.  Digital Imaging and Microtexture Analysis of the Nerve Fiber Layer , 2000, Journal of glaucoma.

[21]  R. H. Moore,et al.  Statistical Distributions: A Handbook for Students and Practitioners , 1975 .

[22]  R. Kolar,et al.  Retinal image analysis aimed at support of early neural-layer deterioration diagnosis , 2009, 2009 9th International Conference on Information Technology and Applications in Biomedicine.

[23]  R. Kolář,et al.  Automatic Rigid Registration and Analysis of Colour Fundus Image in Patients with Diabetic Retinopathy , 2009 .

[24]  F. Medeiros,et al.  Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. , 2005, American journal of ophthalmology.

[25]  Jirí Jan,et al.  Retinal nerve fiber layer analysis via Markov random fields texture modelling , 2010, 2010 18th European Signal Processing Conference.

[26]  S Kulwant Red-free photography of the retina. , 1982, The Journal of audiovisual media in medicine.

[27]  Parul Sony,et al.  Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. , 2006, Investigative ophthalmology & visual science.

[28]  R. Kolá Detection of Glaucomatous Eye via Color Fundus Images Using Fractal Dimensions , 2008 .

[29]  Jirí Jan,et al.  Illumination correction and contrast equalization in colour fundus images , 2011, 2011 19th European Signal Processing Conference.

[30]  Derrick Vail,et al.  Pathologie Des Auges , 1959 .

[31]  Mithlesh C Sharma Retina and optic nerve imaging. , 2004, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[32]  Yogesan Kanagasingam,et al.  Texture analysis of retinal images to determine nerve fibre loss , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[33]  A.-M. Oliva,et al.  Search for Color-Dependent Nerve-Fiber-Layer Thinning in Glaucoma: A Pilot Study Using Digital Imaging Tehniques , 2007 .

[34]  L Frisén,et al.  Fundoscopy of nerve fiber layer defects in glaucoma. , 1973, Investigative ophthalmology.

[35]  Jirí Jan,et al.  Retinal image analysis aimed at blood vessel tree segmentation and early detection of neural-layer deterioration , 2012, Comput. Medical Imaging Graph..

[36]  Cathy Frey,et al.  Investigative Ophthalmology and Visual Science , 2010 .