Generalised Weyl theorems and spectral pollution in the Galerkin method

We consider a general framework for investigating spectral pollution in the Galerkin method. We show how this phenomenon is characterised via the existence of particular Weyl sequences which are singular in a suitable sense. For a semi-bounded selfadjoint operator A we identify relative compactness conditions on a selfadjoint perturbation B ensuring that the limiting set of spectral pollution of A and B coincide. Our results show that, under perturbation, this limiting set behaves in a similar fashion as the essential spectrum.

[1]  I. P. Grant,et al.  Conditions for convergence of variational solutions of Dirac's equation in a finite basis , 1982 .

[2]  Marco Marletta,et al.  Neumann–Dirichlet maps and analysis of spectral pollution for non-self-adjoint elliptic PDEs with real essential spectrum , 2010 .

[3]  Nabile Boussaid,et al.  Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials , 2008, 0808.0228.

[4]  Mathieu Lewin,et al.  Variational methods in relativistic quantum mechanics , 2007, 0706.3309.

[5]  S. P. Goldman,et al.  Application of discrete-basis-set methods to the Dirac equation , 1981 .

[6]  Michael Levitin,et al.  Spectral pollution and second-order relative spectra for self-adjoint operators , 2002 .

[7]  E B Davies,et al.  Spectral Pollution , 2002 .

[8]  W. Kutzelnigg Basis set expansion of the dirac operator without variational collapse , 1984 .

[9]  J. Rappaz,et al.  On spectral pollution in the finite element approximation of thin elastic “membrane” shells , 1997 .

[10]  Jean Dolbeault,et al.  On the eigenvalues of operators with gaps. Application to Dirac operators. , 2000, 2206.06327.

[11]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[12]  Mathieu Lewin,et al.  Spectral pollution and how to avoid it , 2008, 0812.2153.

[13]  J. Weidmann,et al.  Approximation of isolated eigenvalues of general singular ordinary differential operators , 1995 .

[14]  Eric Cances,et al.  Non-perturbative embedding of local defects in crystalline materials , 2007, 0706.0794.

[15]  Lyonell Boulton,et al.  On approximation of the eigenvalues of perturbed periodic Schrödinger operators , 2007, math/0702420.

[16]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[17]  E. Brian Davies Spectral Theory and Differential Operators: Preface , 1995 .

[18]  Anders C. Hansen,et al.  On the approximation of spectra of linear operators on Hilbert spaces , 2008 .

[19]  Monique Dauge,et al.  Numerical approximation of the spectra of non-compact operators arising in buckling problems , 2002, J. Num. Math..

[20]  L. Boulton,et al.  On the convergence of second-order spectra and multiplicity , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  A. Pokrzywa,et al.  Method of orthogonal projections and approximation of the spectrum of a bounded operator II , 1979 .

[22]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..

[23]  C. Tretter,et al.  Variational principles and eigenvalue estimates for unbounded block operator matrices and applications , 2004 .

[24]  A. A. Shkalikov,et al.  The Essential Spectrum of Some Matrix Operators , 1994 .

[25]  Jean Descloux,et al.  Essential Numerical Range of an Operator with Respect to a Coercive form and the Approximation of Its Spectrum by the Galerkin Method , 1981 .

[26]  Bernd Thaller,et al.  The Dirac Equation , 1992 .

[27]  Richard E. Stanton,et al.  Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations , 1984 .

[28]  Approximation of isolated eigenvalues of ordinary differential operators. , 1993 .

[29]  Mixed nite elements for Maxwell ' s eigenproblem : the question of spurious modes , 2014 .

[30]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[31]  M. Marletta,et al.  Numerical computation of eigenvalues in spectral gaps of Sturm-Liouville operators , 2006 .