Parietal Cortex Mediates Conscious Perception of Illusory Gestalt

Grouping local elements into a holistic percept, also known as spatial binding, is crucial for meaningful perception. Previous studies have shown that neurons in early visual areas V1 and V2 can signal complex grouping-related information, such as illusory contours or object-border ownerships. However, relatively little is known about higher-level processes contributing to these signals and mediating global Gestalt perception. We used a novel bistable motion illusion that induced alternating and mutually exclusive vivid conscious experiences of either dynamic illusory contours forming a global Gestalt or moving ungrouped local elements while the visual stimulation remained the same. fMRI in healthy human volunteers revealed that activity fluctuations in two sites of the parietal cortex, the superior parietal lobe and the anterior intraparietal sulcus (aIPS), correlated specifically with the perception of the grouped illusory Gestalt as opposed to perception of ungrouped local elements. We then disturbed activity at these two sites in the same participants using transcranial magnetic stimulation (TMS). TMS over aIPS led to a selective shortening of the duration of the global Gestalt percept, with no effect on that of local elements. The results suggest that aIPS activity is directly involved in the process of spatial binding during effortless viewing in the healthy brain. Conscious perception of global Gestalt is therefore associated with aIPS function, similar to attention and perceptual selection.

[1]  Hidehiko Komatsu,et al.  Relationship between Neural Responses and Visual Grouping in the Monkey Parietal Cortex , 2009, The Journal of Neuroscience.

[2]  M. Grabowecky,et al.  Long-Term Speeding in Perceptual Switches Mediated by Attention-Dependent Plasticity in Cortical Visual Processing , 2007, Neuron.

[3]  Paul Schrater,et al.  Shape perception reduces activity in human primary visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R Shapley,et al.  Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[6]  R. S. J. Frackowiak,et al.  Human brain activity during spontaneously reversing perception of ambiguous figures , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[8]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[9]  Jon Driver,et al.  Parallel detection of Kanizsa subjective figures in the human visual system , 1994, Nature.

[10]  Kalanit Grill-Spector,et al.  Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. , 2008, Journal of neurophysiology.

[11]  I. Biederman,et al.  Neural evidence for intermediate representations in object recognition , 2006, Vision Research.

[12]  Geraint Rees,et al.  Structural and functional fractionation of right superior parietal cortex in bistable perception , 2011, Current Biology.

[13]  Fang Fang,et al.  Perceptual grouping and inverse fMRI activity patterns in human visual cortex. , 2008, Journal of vision.

[14]  Caspar M. Schwiedrzik,et al.  Stimulus Predictability Reduces Responses in Primary Visual Cortex , 2010, The Journal of Neuroscience.

[15]  S. Kastner,et al.  Interactions of Top-Down and Bottom-Up Mechanisms in Human Visual Cortex , 2011, The Journal of Neuroscience.

[16]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[17]  R. Bálint Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. pp. 67–81 , 1909 .

[18]  Karl J. Friston,et al.  Predictive coding explains binocular rivalry: An epistemological review , 2008, Cognition.

[19]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[20]  R. von der Heydt,et al.  Synchrony and the binding problem in macaque visual cortex. , 2008, Journal of vision.

[21]  Randolph Blake,et al.  The Role of Frontal and Parietal Brain Areas in Bistable Perception , 2011, The Journal of Neuroscience.

[22]  G. Rees,et al.  Neural correlates of perceptual rivalry in the human brain. , 1998, Science.

[23]  I. Wolpert,et al.  Die simultanagnosie — störung der gesamtauffassung , 1924 .

[24]  F. Qiu,et al.  Figure-ground mechanisms provide structure for selective attention , 2007, Nature Neuroscience.

[25]  F. Qiu,et al.  Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules , 2005, Neuron.

[26]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[27]  Richard S. J. Frackowiak,et al.  Where in the brain does visual attention select the forest and the trees? , 1996, Nature.

[28]  N. Logothetis,et al.  Disrupting Parietal Function Prolongs Dominance Durations in Binocular Rivalry , 2010, Current Biology.

[29]  N. Logothetis,et al.  Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. , 2008, Cerebral cortex.

[30]  V. Walsh,et al.  Right parietal TMS shortens dominance durations in binocular rivalry , 2010, Current Biology.

[31]  Carmel Mevorach,et al.  Opposite biases in salience-based selection for the left and right posterior parietal cortex , 2006, Nature Neuroscience.

[32]  Nikolaus Weiskopf,et al.  Hemispheric Differences in Frontal and Parietal Influences on Human Occipital Cortex: Direct Confirmation with Concurrent TMS–fMRI , 2009, Journal of Cognitive Neuroscience.

[33]  Carmel Mevorach,et al.  Ignoring the Elephant in the Room: A Neural Circuit to Downregulate Salience , 2010, The Journal of Neuroscience.

[34]  M Dojat,et al.  Moving illusory contours activate primary visual cortex: an fMRI study. , 2000, Cerebral cortex.

[35]  R. von der Heydt,et al.  Analysis of the Context Integration Mechanisms Underlying Figure–Ground Organization in the Visual Cortex , 2010, The Journal of Neuroscience.

[36]  D. Kersten,et al.  Border Ownership Selectivity in Human Early Visual Cortex and its Modulation by Attention , 2009, The Journal of Neuroscience.

[37]  Philipp Sterzer,et al.  A neural basis for inference in perceptual ambiguity , 2007, Proceedings of the National Academy of Sciences.

[38]  N. Logothetis,et al.  Integration of Local Features into Global Shapes Monkey and Human fMRI Studies , 2003, Neuron.

[39]  J. Rothwell,et al.  Theta Burst Stimulation of the Human Motor Cortex , 2005, Neuron.

[40]  Michael Erb,et al.  fMRI of global visual perception in simultanagnosia , 2009, Neuropsychologia.

[41]  Gregor Thut,et al.  Rhythmic TMS over Parietal Cortex Links Distinct Brain Frequencies to Global versus Local Visual Processing , 2011, Current Biology.

[42]  Andreas Bartels,et al.  A Transcription Factor Response Element for Gene Expression During , 2022 .

[43]  J. Mattingley,et al.  Preattentive Filling-in of Visual Surfaces in Parietal Extinction , 1997, Science.

[44]  Stuart Anstis,et al.  Local versus global perception of ambiguous motion displays. , 2011, Journal of vision.

[45]  S. Yantis,et al.  Cortical mechanisms of space-based and object-based attentional control , 2003, Current Opinion in Neurobiology.

[46]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[47]  R. Bálint Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. pp. 51–66 , 1909 .