Absence of Shocks for One Dimensional Euler–Poisson System

It is shown that smooth solutions with small amplitude to the one dimensional Euler–Poisson system for electrons persist forever with no shock formation.

[1]  Jalal Shatah,et al.  Normal forms and quadratic nonlinear Klein‐Gordon equations , 1985 .

[2]  Yan Guo,et al.  The Euler-Maxwell two-fluid system in 3D , 2013, 1303.1060.

[3]  A. Ionescu,et al.  Global Analysis of a Model for Capillary Water Waves in Two Dimensions , 2016 .

[4]  J. Delort,et al.  Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension $1$ , 2001 .

[5]  N. Hayashi,et al.  The initial value problem for the cubic nonlinear Klein–Gordon equation , 2008 .

[6]  Jean-Marc Delort,et al.  Sobolev estimates for two dimensional gravity water waves , 2013, 1307.3836.

[7]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[8]  Dong Li,et al.  The Cauchy problem for the two dimensional Euler-Poisson system , 2011, 1109.5980.

[9]  Yan Guo,et al.  Global Smooth Ion Dynamics in the Euler-Poisson System , 2010, 1003.3653.

[10]  K. Nakanishi,et al.  Scattering theory for the Gross-Pitaevskii equation in three dimensions , 2008, 0803.3208.

[11]  Yan Guo,et al.  Global solutions of certain plasma fluid models in three-dimension , 2014 .

[12]  A. Ionescu,et al.  The Euler–Poisson System in 2D: Global Stability of the Constant Equilibrium Solution , 2011, 1110.0798.

[13]  Dong Li,et al.  Smooth global solutions for the two-dimensional Euler Poisson system , 2011, 1109.3882.

[14]  Nader Masmoudi,et al.  Nonneutral Global Solutions for the Electron Euler-Poisson System in Three Dimensions , 2013, SIAM J. Math. Anal..

[15]  L. Hörmander,et al.  Lectures on Nonlinear Hyperbolic Differential Equations , 1997 .

[16]  Juhi Jang,et al.  The two-dimensional Euler-Poisson system with spherical symmetry , 2011, 1109.2643.

[17]  Lijia Han,et al.  Global smooth solution for a kind of two-fluid system in plasmas , 2012 .

[18]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[19]  Fabio Pusateri,et al.  Global solutions for the gravity water waves system in 2d , 2013, Inventiones mathematicae.

[20]  A. Ionescu,et al.  Global analysis of a model for capillary water waves in 2D , 2014, 1406.6042.

[21]  N. Hayashi,et al.  Quadratic nonlinear Klein-Gordon equation in one dimension , 2012 .

[22]  Nader Masmoudi,et al.  Global solutions for the gravity water waves equation in dimension 3 , 2009 .

[23]  A. Ionescu,et al.  Global solutions of quasilinear systems of Klein--Gordon equations in 3D , 2012, 1208.2661.

[24]  Dehua Wang,et al.  Large BV solutions to the compressible isothermal Euler–Poisson equations with spherical symmetry , 2006 .

[25]  A. Ionescu,et al.  Global Regularity for 2d Water Waves with Surface Tension , 2014, Memoirs of the American Mathematical Society.

[26]  Yan Guo,et al.  Smooth Irrotational Flows in the Large to the Euler–Poisson System in R3+1 , 1998 .

[27]  Thomas C. Sideris,et al.  Formation of singularities in three-dimensional compressible fluids , 1985 .

[28]  J. Delort “Existence globale et comportement asymptotique pour l'équation de Klein–Gordon quasi linéaire à données petites en dimension 1” [Ann. Sci. École Norm. Sup. (4) 34 (1) (2001) 1–61] , 2006 .

[29]  Global existence for the Euler-Maxwell system , 2011, 1107.1595.

[30]  A. Ionescu,et al.  Nonlinear fractional Schrödinger equations in one dimension , 2012, 1209.4943.

[31]  Yu Deng,et al.  The Euler–Maxwell System for Electrons: Global Solutions in 2D , 2016, 1605.05340.