Design and On-Wafer Characterization of $G$ -Band SiGe HBT Low-Noise Amplifiers

This paper presents the design and thorough on-wafer characterization of two G-band low-noise amplifiers (LNAs) implemented using 0.13-μm silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) with peak fT/fmax of 300/500 GHz. The impact of the substrate network and optimized via interconnections on the SiGe HBT performance is investigated to ensure that maximum performance is extracted from each SiGe HBT. The two LNAs are separately implemented using only cascode pairs and only common-emitter (CE) SiGe HBTs to determine which configuration yields better performance in a multistage G-band LNA. The cascode LNA achieves a peak gain of 24.0 dB at 158 GHz with a mean noise figure (NF) of 8.2 dB from 145 to 165 GHz, while the CE LNA achieves a 17.2 dB of gain at 183 GHz with a mean NF of 8.0 dB across 165-200 GHz. A novel implementation of blackbody noise sources for on-wafer Y-factor NF measurements reduces the waveguide length needed to transition between the antenna and the probe, which significantly reduces the sensitivity to jitter. To the authors' knowledge, these LNAs achieve the lowest reported NF of all SiGe LNAs at these frequencies to date, and the results demonstrate that SiGe HBTs are viable options for millimeter-wave performance-constrained applications.

[1]  K. Aufinger,et al.  A 160-GHz Subharmonic Transmitter and Receiver Chipset in an SiGe HBT Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[2]  Arnulf Leuther,et al.  A 183 GHz Metamorphic HEMT Low-Noise Amplifier With 3.5 dB Noise Figure , 2015, IEEE Microwave and Wireless Components Letters.

[3]  B. Heinemann,et al.  Half-Terahertz SiGe BiCMOS technology , 2012, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[4]  Mehmet Kaynak,et al.  An investigation of fT and fmax degradation due to device interconnects in 0.5 THz SiGe HBT technology , 2014, 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[5]  John D. Cressler,et al.  Integrated silicon-germanium electronics for CubeSat-based radiometers , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[6]  Ullrich R. Pfeiffer,et al.  A 160-GHz low-noise downconversion receiver front-end in a SiGe HBT technology , 2011 .

[7]  John D. Cressler,et al.  Development of silicon-germanium circuits for high-frequency small satellite-based integrated radiometers , 2014, 2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).

[8]  Charles Robert Dietlein,et al.  Components and metrology for terahertz imaging , 2008 .

[9]  J. D. Cressler,et al.  Best practices to ensure the stability of sige HBT cascode low noise amplifiers , 2012, 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[10]  Danny Elad,et al.  A 122-150 GHz LNA with 30 dB gain and 6.2 dB noise figure in SiGe BiCMOS technology , 2015, 2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[11]  M. Tiebout,et al.  Advanced Microwave Imaging , 2012, IEEE Microwave Magazine.

[12]  P. Chevalier,et al.  $D$ -Band Total Power Radiometer Performance Optimization in an SiGe HBT Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[13]  William J. Blackwell,et al.  The MicroMAS and MiRaTA CubeSat atmospheric profiling missions , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[14]  Zheng Wang,et al.  A CMOS 210-GHz Fundamental Transceiver With OOK Modulation , 2014, IEEE Journal of Solid-State Circuits.

[15]  Matthias Seelmann-Eggebert,et al.  MHEMT G-band low-noise amplifiers , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[16]  L. Samoska,et al.  160-270-GHz InP HEMT MMIC Low-Noise Amplifiers , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[17]  A. Leuther,et al.  Metamorphic HEMT MMICs and Modules for Use in a High-Bandwidth 210 GHz Radar , 2008, IEEE Journal of Solid-State Circuits.

[18]  Ian F. Akyildiz,et al.  Terahertz band: Next frontier for wireless communications , 2014, Phys. Commun..

[19]  David D. Wentzloff,et al.  IEEE Transactions on Microwave Theory and Techniques and Antennas and Propagation Announce a Joint Special Issue on Ultra-Wideband (UWB) Technology , 2010 .

[20]  M. Barsky,et al.  Measurement of a 270 GHz Low Noise Amplifier With 7.5 dB Noise Figure , 2007, IEEE Microwave and Wireless Components Letters.

[21]  Mehmet Kaynak,et al.  A SiGe D-Band Low-Noise Amplifier Utilizing Gain-Boosting Technique , 2015, IEEE Microwave and Wireless Components Letters.

[22]  U. R. Pfeiffer,et al.  Subharmonic 220- and 320-GHz SiGe HBT Receiver Front-Ends , 2012, IEEE Transactions on Microwave Theory and Techniques.

[23]  Stefan Malz,et al.  A 233-GHz low noise amplifier with 22.5dB gain in 0.13μm SiGe , 2014, 2014 9th European Microwave Integrated Circuit Conference.

[24]  Frank Ellinger,et al.  220–250-GHz Phased-Array Circuits in 0.13-$\mu{\hbox {m}}$ SiGe BiCMOS Technology , 2013, IEEE Transactions on Microwave Theory and Techniques.

[25]  Arnulf Leuther,et al.  243 GHz low-noise amplifier MMICs and modules based on metamorphic HEMT technology , 2014, International Journal of Microwave and Wireless Technologies.

[26]  Pekka Kangaslahti,et al.  A 6U CubeSat constellation concept for atmospheric temperature and humidity sounding , 2014, 2014 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM).

[27]  Todd Gaier,et al.  Low noise amplifier receivers for millimeter wave atmospheric remote sensing , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[28]  Steven C. Reising,et al.  Radiometric Information Content for Water Vapor and Temperature Profiling in Clear Skies Between 10 and 200 GHz , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[29]  Mehmet Kaynak,et al.  A 0.8 THz $f_{\rm MAX}$ SiGe HBT Operating at 4.3 K , 2014, IEEE Electron Device Letters.

[30]  Corrado Carta,et al.  A Broadband 200 GHz Amplifier with 17 dB Gain and 18 mW DC-Power Consumption in 0.13 $\mu$m SiGe BiCMOS , 2014, IEEE Microwave and Wireless Components Letters.

[31]  D. K. Paul,et al.  Optimum Noise Measure Terminations for Microwave Transistor Amplifiers (Short Paper) , 1985 .

[32]  L. Samoska An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime , 2011, IEEE Transactions on Terahertz Science and Technology.

[33]  Herbert Zirath,et al.  Design and Characterization of $H$-Band (220–325 $~$GHz) Amplifiers in a 250-nm InP DHBT Technology , 2014, IEEE Transactions on Terahertz Science and Technology.

[34]  John D. Cressler,et al.  A Comparison of the Degradation in RF Performance Due to Device Interconnects in Advanced SiGe HBT and CMOS Technologies , 2015, IEEE Transactions on Electron Devices.

[35]  A. Leuther,et al.  Low-noise amplifiers in D-band using 100 nm and 50 nm mHEMT technology , 2010, German Microwave Conference Digest of Papers.