Secondary electron contrast in low-vacuum/environmental scanning electron microscopy of dielectrics

Low vacuum scanning electron microscopy (SEM) is a high-resolution technique, with the ability to obtain secondary electron images of uncoated, nonconductive specimens. This feat is achieved by allowing a small pressure of gas in the specimen chamber. Gas molecules are ionized by primary electrons, as well as by those emitted from the specimen. These ions then assist in dissipating charge from the sample. However, the interactions between the ions, the specimen, and the secondary electrons give rise to contrast mechanisms that are unique to these instruments. This paper summarizes the central issues with charging and discusses how electrostatically stable, reproducible imaging conditions are achieved. Recent developments in understanding the physics of image formation are reviewed, with an emphasis on how local variations in electronic structure, dynamic charging processes, and interactions between ionized gas molecules and low-energy electrons at and near the sample surface give rise to useful contrast m...

[1]  S. Hillenius,et al.  Liquid water as a lone‐pair amorphous semiconductor , 1976 .

[2]  David C. Joy,et al.  An empirical stopping power relationship for low‐energy electrons , 1989 .

[3]  A. Stoneham Theory of defects in solids , 1979 .

[4]  S. Yin,et al.  Environmental SEM investigation on surface defects in 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 single crystal , 2002 .

[5]  Lincoln,et al.  Correlation between Charge Contrast Imaging and the Distribution of Some Trace Level Impurities in Gibbsite. , 2000, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada.

[6]  T. M. Herne,et al.  Development of Environmental Scanning Electron Microscopy Electron Beam Profile Imaging with Self-Assembled Monolayers and Secondary Ion Mass Spectroscopy , 1997 .

[7]  A. Donald,et al.  The use of environmental scanning electron microscopy for imaging wet and insulating materials , 2003, Nature Materials.

[8]  Michael T. Postek,et al.  Potentials for high pressure/environmental SEM microscopy for photomask dimensional metrology , 2003, SPIE Advanced Lithography.

[9]  F. A. Smith,et al.  Calculation of initial and primary yields in the radiolysis of water , 1994 .

[10]  J. Jay-Gerin,et al.  Excess Electrons in Dielectric Media , 1991 .

[11]  J. Cazaux Some considerations on the secondary electron emission, δ, from e− irradiated insulators , 1999 .

[12]  A. Donald,et al.  Electron-gas interactions in the environmental scanning electron microscopes gaseous detector , 2006 .

[13]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[14]  A. Donald,et al.  Interpretation of secondary electron images obtained using a low vacuum SEM. , 2003, Ultramicroscopy.

[15]  G. Danilatos Introduction to the ESEM instrument , 1993, Microscopy research and technique.

[16]  Griffin Charge contrast imaging of material growth and defects in environmental scanning electron miscroscopy--linking electron emission and cathodoluminescence , 2006, Scanning.

[17]  J. Mansfield X-Ray Microanalysis in the Environmental SEM: A Challenge or a Contradiction? , 2000, Microchimica Acta.

[18]  Z. Ding,et al.  Monte Carlo study of secondary electron emission , 2001 .

[19]  J.-Ch. Kuhr,et al.  Attenuation and escape depths of low-energy electron emission , 2001 .

[20]  H. Lafontaine,et al.  Electronic contribution to secondary electron compositional contrast in the scanning electron microscope , 1997 .

[21]  G. Danilatos,et al.  Theory of the Gaseous Detector Device in the Environmental Scanning Electron Microscope , 1990 .

[22]  C. Lavoie,et al.  Field-emission SEM imaging of compositional and doping layer semiconductor superlattices , 1995 .

[23]  C. Humphreys,et al.  Energy-filtered imaging in a field-emission scanning electron microscope for dopant mapping in semiconductors , 2002 .

[24]  R. N. Hamm,et al.  Collective oscillation in liquid water , 1974 .

[25]  David J. Rose,et al.  Basic Processes of Gaseous Electronics , 1956 .

[26]  D. Newbury X-Ray Microanalysis in the Variable Pressure (Environmental) Scanning Electron Microscope , 2002, Journal of research of the National Institute of Standards and Technology.

[27]  J. Cazaux,et al.  Mechanisms of charging in electron spectroscopy , 1999 .

[28]  P. R. Barker,et al.  Electron scattering by gas in the scanning electron microscope , 1979 .

[29]  D. Bright,et al.  Quantitative secondary ion mass spectrometry imaging of self‐assembled monolayer films for electron beam dose mapping in the environmental scanning electron microscope , 1998 .

[30]  J. Jay-Gerin,et al.  On the electronic structure of liquid water: Facts and reflections , 1997 .

[31]  A. Donald,et al.  Dynamic secondary electron contrast effects in liquid systems studied by environmental scanning electron microscopy. , 2006, Scanning.

[32]  Philip M. Morse,et al.  Electronic and Ionic Impact Phenomena , 1953 .

[33]  I. A. Glavatskikh,et al.  Self-consistent electrical charging of insulating layers and metal-insulator-semiconductor structures , 2001 .

[34]  S. Kucheyev,et al.  Imaging charge trap distributions in GaN using environmental scanning electron microscopy , 2000 .

[35]  S. Hofmann,et al.  Dynamic double layer model: Description of time dependent charging phenomena in insulators under electron beam irradiation , 1995 .

[36]  B. G. Yacobi,et al.  Cathodoluminescence Microscopy of Inorganic Solids , 1990, Springer US.

[37]  S. Pimblott,et al.  Monte Carlo Simulation of Range and Energy Deposition by Electrons in Gaseous and Liquid Water , 1996 .

[38]  J. Cazaux Correlation between the x-ray induced and the electron-induced electron emission yields of insulators , 2001 .

[39]  D. R. Penn,et al.  Electron mean-free-path calculations using a model dielectric function. , 1987, Physical review. B, Condensed matter.

[40]  J. Ganachaud,et al.  Theoretical study of the secondary electron emission of insulating targets , 1995 .

[41]  P. Echlin,et al.  Quantitative X-Ray Analysis: The Basics , 1992 .

[42]  H Goncalves,et al.  Scanning , 2004, IEEE Trans. Autom. Control..

[43]  S. Okayama,et al.  Penetration and energy-loss theory of electrons in solid targets , 1972 .

[44]  David C. Joy,et al.  Monte Carlo Modeling for Electron Microscopy and Microanalysis , 1995 .

[45]  J. C. Ashley Interaction of low-energy electrons with condensed matter: stopping powers and inelastic mean free paths from optical data , 1988 .

[46]  H. D. Hagstrum Studies of Adsorbate Electronic Structure Using Ion Neutralization and Photoemission Spectroscopies , 1978 .

[47]  B. Thiel Master curves for gas amplification in low vacuum and environmental scanning electron microscopy. , 2004, Ultramicroscopy.

[48]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .

[49]  R. Friend,et al.  ESEM imaging of polyfluorene blend cross-sections for organic devices , 2002 .

[50]  S. Yin,et al.  Observation of three-dimensional domain configurations in 0.92Pb(Zn1/3Nb2/3)O-3-0.08PbTiO(3) crystal by environmental scanning electron microscopy , 2001 .

[51]  W. Cao,et al.  Direct Observation of Ferroelectric Domains in LiTa O 3 Using Environmental Scanning Electron Microscopy , 1997 .

[52]  T. Goulet,et al.  On the electronic structure of liquid water: Conduction-band tail revealed by photoionization data , 1990 .

[53]  M. Toth,et al.  The role of induced contrast in images obtained using the environmental scanning electron microscope. , 2006, Scanning.

[54]  H. Fitting,et al.  Monte Carlo simulation of secondary electron emission from the insulator SiO2 , 2002 .

[55]  E. Bauer,et al.  Low energy electron microscopy , 1994 .

[56]  S. Louie,et al.  New model dielectric function and exchange-correlation potential for semiconductors and insulators , 1982 .

[57]  G. Danilatos Foundations of Environmental Scanning Electron Microscopy , 1988 .

[58]  A. Donald,et al.  Electric fields produced by electron irradiation of insulators in a low vacuum environment , 2002 .

[59]  Michelle L. Steen,et al.  Hydrophilic modification of polymeric membranes by low temperature H2O plasma treatment , 2002 .

[60]  James E. Roberts,et al.  Charge Neutralization in the ESEM for Quantitative X-ray Microanalysis , 2004, Microscopy and Microanalysis.

[61]  Joy Study of the Dependence of E2 Energies on Sample Chemistry , 1998, Microscopy and Microanalysis.

[62]  J. Meek,et al.  Electrical breakdown of gases , 1953 .

[63]  L. B. Harris,et al.  Charge neutralisation of insulating surfaces in the SEM by gas ionisation , 1978 .

[64]  David C. Joy,et al.  Metrics of resolution and performance for CD-SEMs , 2000, Advanced Lithography.

[65]  G. Danilatos,et al.  Review and outline of environmental SEM at present , 1991 .

[66]  D. Drouin,et al.  DEPLETION LAYER IMAGING USING A GASEOUS SECONDARY ELECTRON DETECTOR IN AN ENVIRONMENTAL SCANNING ELECTRON MICROSCOPE , 1999 .

[67]  R. H. Ritchie,et al.  Electron inelastic mean free paths and energy losses in solids II: Electron gas statistical model☆☆☆ , 1979 .

[68]  S. Kucheyev,et al.  X-ray spectrometry investigation of electrical isolation in GaN , 2002 .

[69]  B. Griffin,et al.  Charge contrast imaging of geological materials in the environmental scanning electron microscope , 2000 .

[70]  A. Modinos,et al.  Field, Thermionic and Secondary Electron Emission Spectroscopy , 1984 .

[71]  J. Cazaux,et al.  Some considerations on the electric field induced in insulators by electron bombardment , 1986 .

[72]  Y. Hahn Electron - ion recombination processes - an overview , 1997 .

[73]  A. Donald,et al.  Direct Observation of Water−Oil Emulsion Systems in the Liquid State by Environmental Scanning Electron Microscopy , 1998 .

[74]  S. Wight Experimental data and model simulations of beam spread in the environmental scanning electron microscope. , 2006, Scanning.

[75]  H. W. Sarkas,et al.  Using cluster studies to approach the electronic structure of bulk water: Reassessing the vacuum level, conduction band edge, and band gap of water , 1997 .

[76]  M. Toth,et al.  Charging Processes in Low Vacuum Scanning Electron Microscopy , 2004, Microscopy and Microanalysis.

[77]  R. Wünsch,et al.  Fluence dependent electron emission as a measure of surface modification induced by swift heavy ions , 1996 .

[78]  T. Kusama,et al.  Monte Carlo simulation of physicochemical processes of liquid water radiolysis , 1997 .

[79]  G. Danilatos Bibliography of environmental scanning electron microscopy , 1993, Microscopy research and technique.

[80]  F. Lincoln,et al.  Three-dimensional reconstruction of microstructures in gibbsite using charge contrast images. , 2006, Scanning.

[81]  Milos Toth,et al.  Electron imaging of dielectrics under simultaneous electron-ion irradiation , 2002 .

[82]  Z. J. Ding,et al.  A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production , 2006 .

[83]  Toth,et al.  The effects of space charge on contrast in images obtained using the environmental scanning electron microscope , 2006, Scanning.

[84]  H. Seiler,et al.  Secondary electron emission in the scanning electron microscope , 1983 .

[85]  A. Donald,et al.  Quantification of electron-ion recombination in an electron-beam-irradiated gas capacitor , 2002 .

[86]  E. W. McDaniel,et al.  Transport Properties of Ions in Gases , 1988 .

[87]  R. Gauvin,et al.  CASINO: A new monte carlo code in C language for electron beam interaction —part I: Description of the program , 2006 .