Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier-Stokes Equations in the Low Mach Number Regime

We study the convergence of numerical solutions of the compressible Navier--Stokes system to its incompressible limit. The numerical solution is obtained by a combined finite element--finite volume method based on the linear Crouzeix--Raviart finite element for the velocity and piecewise constant approximation for the density. The convective terms are approximated using upwinding. The distance between a numerical solution of the compressible problem and the strong solution of the incompressible Navier--Stokes equations is measured by means of a relative energy functional. For barotropic pressure exponent $\gamma \geq 3/2$ and for well-prepared initial data we obtain uniform convergence of order ${\cal O}(\sqrt{\Delta t}, h^a, \varepsilon)$, $a = \min \{ \frac{2 \gamma - 3 }{ \gamma}, 1\}$. Extensive numerical simulations confirm that the numerical solution of the compressible problem converges to the solution of the incompressible Navier--Stokes equations as the discretization parameters $\Delta t$, $h$ a...

[1]  Mária Lukácová-Medvid'ová,et al.  Adaptive discontinuous evolution Galerkin method for dry atmospheric flow , 2014, J. Comput. Phys..

[2]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[3]  Mária Lukácová-Medvid'ová,et al.  Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation , 2017, J. Comput. Phys..

[4]  R. Eymard,et al.  Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .

[5]  Trygve K. Karper,et al.  A convergent FEM-DG method for the compressible Navier–Stokes equations , 2012, Numerische Mathematik.

[6]  Hester Bijl,et al.  A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .

[7]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers , 2007 .

[8]  L. Evans Measure theory and fine properties of functions , 1992 .

[9]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[10]  Sebastian Noelle,et al.  IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows , 2014 .

[11]  E. Feireisl,et al.  Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids , 2011 .

[12]  R. Herbin,et al.  On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations , 2014 .

[13]  Luc Mieussens,et al.  Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..

[14]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[15]  E. Feireisl,et al.  Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System , 2011, 1111.4256.

[16]  Julian Fischer,et al.  A Posteriori Modeling Error Estimates for the Assumption of Perfect Incompressibility in the Navier-Stokes Equation , 2015, SIAM J. Numer. Anal..

[17]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[18]  Mária Lukácová-Medvid'ová,et al.  Convergence of a Mixed Finite Element–Finite Volume Scheme for the Isentropic Navier–Stokes System via Dissipative Measure-Valued Solutions , 2016, Found. Comput. Math..

[19]  Hirofumi Notsu,et al.  Error estimates of a stabilized Lagrange-Galerkin scheme for the Navier-Stokes equations , 2015, 1505.06545.

[20]  C. Munz,et al.  Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .

[21]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[22]  Tao Xiong,et al.  Analysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling , 2013, SIAM J. Numer. Anal..

[23]  E. Feireisl,et al.  Singular Limits in Thermodynamics of Viscous Fluids , 2009 .

[24]  Miloslav Feistauer,et al.  On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..

[25]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[26]  BIYUE LIU,et al.  The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..

[27]  Claus-Dieter Munz,et al.  A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..

[28]  Thierry Gallouët,et al.  A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..

[29]  T. Gallouët,et al.  AN UNCONDITIONALLY STABLE PRESSURE CORRECTION SCHEME FOR THE COMPRESSIBLE BAROTROPIC NAVIER-STOKES EQUATIONS , 2008 .

[30]  E. Feireisl,et al.  Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier–Stokes System , 2011, 1111.3082.

[31]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[32]  Biyue Liu,et al.  On a finite element method for three‐dimensional unsteady compressible viscous flows , 2004 .

[33]  R. Herbin,et al.  Staggered discretizations, pressure correction schemes and all speed barotropic flows , 2011 .