Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier-Stokes Equations in the Low Mach Number Regime
暂无分享,去创建一个
Mária Lukácová-Medvid'ová | Sárka Necasová | Antonín Novotný | Eduard Feireisl | Bangwei She | E. Feireisl | A. Novotný | Š. Nečasová | Bangwei She | M. Lukáčová-Medvid’ová
[1] Mária Lukácová-Medvid'ová,et al. Adaptive discontinuous evolution Galerkin method for dry atmospheric flow , 2014, J. Comput. Phys..
[2] P. Degond,et al. All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.
[3] Mária Lukácová-Medvid'ová,et al. Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation , 2017, J. Comput. Phys..
[4] R. Eymard,et al. Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .
[5] Trygve K. Karper,et al. A convergent FEM-DG method for the compressible Navier–Stokes equations , 2012, Numerische Mathematik.
[6] Hester Bijl,et al. A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .
[7] Vít Dolejší,et al. On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers , 2007 .
[8] L. Evans. Measure theory and fine properties of functions , 1992 .
[9] C. Munz,et al. The extension of incompressible flow solvers to the weakly compressible regime , 2003 .
[10] Sebastian Noelle,et al. IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows , 2014 .
[11] E. Feireisl,et al. Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids , 2011 .
[12] R. Herbin,et al. On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations , 2014 .
[13] Luc Mieussens,et al. Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..
[14] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[15] E. Feireisl,et al. Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System , 2011, 1111.4256.
[16] Julian Fischer,et al. A Posteriori Modeling Error Estimates for the Assumption of Perfect Incompressibility in the Navier-Stokes Equation , 2015, SIAM J. Numer. Anal..
[17] A. Majda,et al. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .
[18] Mária Lukácová-Medvid'ová,et al. Convergence of a Mixed Finite Element–Finite Volume Scheme for the Isentropic Navier–Stokes System via Dissipative Measure-Valued Solutions , 2016, Found. Comput. Math..
[19] Hirofumi Notsu,et al. Error estimates of a stabilized Lagrange-Galerkin scheme for the Navier-Stokes equations , 2015, 1505.06545.
[20] C. Munz,et al. Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .
[21] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[22] Tao Xiong,et al. Analysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling , 2013, SIAM J. Numer. Anal..
[23] E. Feireisl,et al. Singular Limits in Thermodynamics of Viscous Fluids , 2009 .
[24] Miloslav Feistauer,et al. On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..
[25] Jian‐Guo Liu,et al. An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .
[26] BIYUE LIU,et al. The Analysis of a Finite Element Method with Streamline Diffusion for the Compressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..
[27] Claus-Dieter Munz,et al. A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..
[28] Thierry Gallouët,et al. A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..
[29] T. Gallouët,et al. AN UNCONDITIONALLY STABLE PRESSURE CORRECTION SCHEME FOR THE COMPRESSIBLE BAROTROPIC NAVIER-STOKES EQUATIONS , 2008 .
[30] E. Feireisl,et al. Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier–Stokes System , 2011, 1111.3082.
[31] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[32] Biyue Liu,et al. On a finite element method for three‐dimensional unsteady compressible viscous flows , 2004 .
[33] R. Herbin,et al. Staggered discretizations, pressure correction schemes and all speed barotropic flows , 2011 .