Flexible-CMOS and biocompatible piezoelectric AlN material for MEMS applications

The development of a CMOS compatible flexible piezoelectric material is desired for numerous applications and in particular for biomedical MEMS devices. Aluminum nitride (AlN) is the most commonly used CMOS compatible piezoelectric material, which is typically deposited on Si in order to enhance the c-axis (002) crystal orientation which gives AlN its high piezoelectric properties. This paper reports on the successful deposition of AlN on polyimide (PI-2611) material. The AlN deposited has a FWHM (002) value of 5.1 and a piezoelectric d33 value of 1.12 pm V 1 , and SEM images show high quality columnar grains. The highly crystalline AlN material is due to the semi-crystalline properties of the polyimide film used. Cytotoxicity testing showed the AlN/polyimide material to be non-toxic to 3T3 cells and primary neurons. Surface properties of the AlN/polyimide film were evaluated as they have a significant effect on the adhesion of cells to the film. The results show neurons adhering to the AlN surface. The results of this paper show the characterization of a new flexible-CMOS and biocompatible AlN/polyimide material for MEMS devices with improved crystallinity and piezoelectric properties. (Some figures may appear in colour only in the online journal)

[1]  Thomas Stieglitz,et al.  In vitro evaluation of the long-term stability of polyimide as a material for neural implants. , 2010, Biomaterials.

[2]  H. Kuzmany,et al.  Evidence for trans-polyacetylene in nanocrystalline diamond films from H–D isotropic substitution experiments , 2003 .

[3]  R. Dalmau,et al.  X-Ray Photoelectron Spectroscopy Characterization of Aluminum Nitride Surface Oxides: Thermal and Hydrothermal Evolution , 2007 .

[4]  R. E. Sah,et al.  Static and dynamic characterization of AlN and nanocrystalline diamond membranes , 2012 .

[5]  J. Binner,et al.  Surface chemistry and hydrolysis of a hydrophobic-treated aluminium nitride powder , 2005 .

[6]  M. Okandan,et al.  Nonhermetic Encapsulation Materials for MEMS-Based Movable Microelectrodes for Long-Term Implantation in the Brain , 2009, Journal of Microelectromechanical Systems.

[7]  Shurong Dong,et al.  Deposition of c-axis orientation aluminum nitride films on flexible polymer substrates by reactive direct-current magnetron sputtering , 2012 .

[8]  D. Polla,et al.  PROCESSING AND CHARACTERIZATION OF PIEZOELECTRIC MATERIALS AND INTEGRATION INTO MICROELECTROMECHANICAL SYSTEMS , 1998 .

[9]  J. Muthuswamy,et al.  Early onset of electrical activity in developing neurons cultured on carbon nanotube immobilized microelectrodes , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  Biocompatible AlN-based piezo energy harvesters for implants , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[11]  Xiao Hu,et al.  Thermal expansion behaviour of polystyrene-aluminium nitride composites , 2000 .

[12]  Osamu Fukuda,et al.  Preparation of Oriented Aluminum Nitride Thin Films on Polyimide Films and Piezoelectric Response with High Thermal Stability and Flexibility , 2007 .

[13]  Yoshinori Koga,et al.  Preparation of AlN and LiNbO3 thin films on diamond substrates by sputtering method , 2002 .

[14]  Kevin M. Farinholt,et al.  Energy harvesting from a backpack instrumented with piezoelectric shoulder straps , 2007 .

[15]  Beth L Pruitt,et al.  Aluminum nitride on titanium for CMOS compatible piezoelectric transducers , 2010, Journal of micromechanics and microengineering : structures, devices, and systems.

[16]  Nathan Jackson,et al.  Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance , 2013 .

[17]  Albert P. Pisano,et al.  Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness , 2011 .

[18]  K. Haenen,et al.  AlN on nanocrystalline diamond piezoelectric cantilevers for sensors/actuators , 2009 .

[19]  Shantanu Chakrabartty,et al.  A sub-microwatt piezo-floating-gate sensor for long-term fatigue monitoring in biomechanical implants , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[20]  Milan Pophristic,et al.  Single-crystal aluminum nitride nanomechanical resonators , 2001 .

[21]  S. Lee,et al.  Biosensing of biophysical characterization by metal-aluminum nitride-metal capacitor , 2007 .

[22]  S. Olenych,et al.  Vascular smooth muscle cells on polyelectrolyte multilayers: hydrophobicity-directed adhesion and growth. , 2005, Biomacromolecules.

[23]  L. Kirste,et al.  Size-dependent reactivity of diamond nanoparticles. , 2010, ACS nano.

[24]  K. Haenen,et al.  Diamond nanoseeding on silicon: stability under H2 MPCVD exposures and early stages of growth , 2008 .

[25]  Morito Akiyama,et al.  Influence of molybdenum bottom electrodes on crystal growth of aluminum nitride thin films , 2008 .

[26]  M. A. Respaldiza,et al.  Influence of oxygen and argon on the crystal quality and piezoelectric response of AlN sputtered thin films , 2004 .

[27]  Morito Akiyama,et al.  Sensitivity enhancement in diaphragms made by aluminum nitride thin films prepared on polyimide films , 2008 .

[28]  O. Williams,et al.  High Young's modulus in ultra thin nanocrystalline diamond , 2010 .

[29]  Junru Wu,et al.  Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading , 2012 .

[30]  F. Waldron,et al.  CMOS compatible low-frequency aluminium nitride MEMS piezoelectric energy harvesting device , 2013, Microtechnologies for the New Millennium.

[31]  V. Pop,et al.  Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system , 2010 .

[32]  Gabriel A. Silva,et al.  Neuroscience nanotechnology: progress, opportunities and challenges , 2006, Nature Reviews Neuroscience.

[33]  G. Krijnen,et al.  Surface Micromachining Process for the Integration of AlN Piezoelectric Microstructures , 2004 .

[34]  J. Muthuswamy,et al.  Flexible Chip-Scale Package and Interconnect for Implantable MEMS Movable Microelectrodes for the Brain , 2009, Journal of Microelectromechanical Systems.

[35]  Massimo De Vittorio,et al.  Aluminum Nitride piezo-MEMS on polyimide flexible substrates , 2011 .

[36]  Simona Petroni,et al.  Flexible piezoelectric cantilevers fabricated on polyimide substrate , 2012 .

[37]  Elias Siores,et al.  A piezoelectric fibre composite based energy harvesting device for potential wearable applications , 2008 .

[38]  Theodore W. Berger,et al.  Neuronal Network Morphology and Electrophysiologyof Hippocampal Neurons Cultured on Surface-Treated Multielectrode Arrays , 2007, IEEE Transactions on Biomedical Engineering.

[39]  Brian H. Houston,et al.  Nanomechanical Resonant Structures in Nanocrystalline Diamond , 2002 .

[40]  Morito Akiyama,et al.  Influence of metal electrodes on crystal orientation of aluminum nitride thin films , 2004 .

[41]  M. Aguilar,et al.  Effect of particle bombardment on the orientation and the residual stress of sputtered AlN films for SAW devices , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[42]  L. Vergara,et al.  Degradation of the piezoelectric response of sputtered c-axis AlN thin films with traces of non-(0002) x-ray diffraction peaks , 2006 .

[43]  Y. Morilla,et al.  Comparative study of c-axis AlN films sputtered on metallic surfaces , 2005 .

[44]  T. Stieglitz,et al.  A biohybrid system to interface peripheral nerves after traumatic lesions: design of a high channel sieve electrode. , 2002, Biosensors & bioelectronics.

[45]  Kui Yao,et al.  Phase transition and properties of a ferroelectric poly(vinylidene fluoride-hexafluoropropylene) copolymer , 2005 .

[46]  Kazuhiro Nonaka,et al.  Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes , 2007 .

[47]  Peter Koidl,et al.  Novel microwave plasma reactor for diamond synthesis , 1998 .

[48]  Paul Muralt,et al.  Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering , 2001 .

[49]  J. Muthuswamy,et al.  Artificial dural sealant that allows multiple penetrations of implantable brain probes , 2008, Journal of Neuroscience Methods.

[50]  S. Srinivasan,et al.  Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems , 2007 .

[51]  Zhongwei Jiang,et al.  A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals , 2006 .

[52]  Joseph A. Paradiso,et al.  Energy Scavenging with Shoe-Mounted Piezoelectrics , 2001, IEEE Micro.

[53]  Skandar Basrour,et al.  Integrated power harvesting system including a MEMS generator and a power management circuit , 2008 .

[54]  Zhong Lin Wang,et al.  Piezoelectric nanogenerator using p-type ZnO nanowire arrays. , 2009, Nano letters.

[55]  Oliver Ambacher,et al.  Piezoelectric properties of polycrystalline AlN thin films for MEMS application , 2006 .

[56]  T. Kosmač,et al.  Reactivity of Aluminum Nitride Powder in Dilute Inorganic Acids , 2000 .

[57]  Y. V. Andel,et al.  Vibration energy harvesting with aluminum nitride-based piezoelectric devices , 2009 .

[58]  Yury Gogotsi,et al.  Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. , 2006, Journal of the American Chemical Society.

[59]  Rosendo Sanjines,et al.  Effect of substrate temperature and bias voltage on the crystallite orientation in RF magnetron sputtered AlN thin films , 2006 .

[60]  D. Lim,et al.  Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles , 2010, Nanotechnology.

[61]  H. Wada,et al.  Piezoelectric materials mimic the function of the cochlear sensory epithelium , 2011, Proceedings of the National Academy of Sciences.