Design of a multilevel fuzzy controller for nonlinear systems and stability analysis

In this paper, a multilevel fuzzy control (MLFC) system is developed and implemented to deal with the real-world nonlinear plants with intrinsic uncertainties and time-varying parameters. The proposed fuzzy control strategy has a hierarchical structure with an adaptation mechanism embedded in the lower level to tune the output membership functions (MFs) of the first layer fuzzy controller and can be used to control a system with an input-output monotonic relationship or a piecewise monotonic relationship. The stability of the closed-loop system under the proposed MLFC is theoretically proven. Simulations are carried out by applying the proposed multilevel fuzzy control (MLFC) to a uncertain nonlinear plants, and it is shown that much better system performances are achieved compared with conventional fuzzy logic controllers (FLC), even in presence of disturbance and noise.

[1]  Reza Langari,et al.  Fuzzy Control: Synthesis and Analysis , 2000 .

[2]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[3]  Leon O. Chua,et al.  Synchronization of Chua's circuits with time-varying channels and parameters , 1996 .

[4]  G.J. Vachtsevanos,et al.  Fuzzy logic control of an automotive engine , 1993, IEEE Control Systems.

[5]  Masayoshi Tomizuka,et al.  Fuzzy logic control for lateral vehicle guidance , 1994 .

[6]  K.M. Passino,et al.  Fuzzy model reference learning control for cargo ship steering , 1993, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[7]  C. S. George Lee,et al.  Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems , 1996 .

[8]  Chaio-Jang Hwang,et al.  A design of fuzzy self-organizing controller , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[9]  B. Yao,et al.  Adaptive robust control without knowing bounds of parameter variations , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[10]  Manfred Morari,et al.  Analysis of discrete-time piecewise affine and hybrid systems , 2002, Autom..

[11]  Kok Kiong Tan,et al.  Robust self-tuning PID controller for nonlinear systems , 2001, IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243).

[12]  Constantinos I. Siettos,et al.  Design of a model identification fuzzy adaptive controller and stability analysis of nonlinear processes , 2001, Fuzzy Sets Syst..

[13]  C.W. de Silva,et al.  Development of an intelligent control system for wood drying processes , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[14]  Ibrahim Eksin,et al.  A new approach to global optimization using a closed loop control system with fuzzy logic controller , 2002 .

[15]  Kevin M. Passino,et al.  Control of discrete time nonlinear systems with a time-varying structure , 2003, Autom..

[16]  George Calcev,et al.  Some remarks on the stability of Mamdani fuzzy control systems , 1998, IEEE Trans. Fuzzy Syst..

[17]  Madan M. Gupta,et al.  Neuro-fuzzy controller for control and robotics applications , 1994 .

[18]  Marcelo C. M. Teixeira,et al.  Stabilizing controller design for uncertain nonlinear systems using fuzzy models , 1999, IEEE Trans. Fuzzy Syst..

[19]  Chieh-Li Chen,et al.  Self-organizing fuzzy logic controller design , 1993 .

[20]  J. Aracil,et al.  Stability Issues in Fuzzy Control , 2000 .

[21]  Raymond Gorez,et al.  Passivity approach to fuzzy control systems , 1998, at - Automatisierungstechnik.

[22]  R. Gorez,et al.  Input-output approach to stability analysis of fuzzy control systems , 1996, Proceedings of the 1996 IEEE International Symposium on Intelligent Control.

[23]  Changsoo Han,et al.  The auto-tuning PID controller using the parameter estimation , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[24]  Hao Ying,et al.  Practical design of nonlinear fuzzy controllers with stability analysis for regulating processes with unknown mathematical models , 1994, Autom..

[25]  Julio Concha,et al.  Design of fuzzy controllers based on stability analysis , 2001, Fuzzy Sets Syst..

[26]  Constantinos I. Siettos,et al.  Implementation and performance of a fuzzy adaptive controller for a tubular reactor , 2000 .

[27]  Zhiqiang Gao,et al.  A stable self-tuning fuzzy logic control system for industrial temperature regulation , 2000 .

[28]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[29]  B. Zhang,et al.  Self-organising fuzzy logic controller , 1992 .

[30]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control - design and stability analysis , 1994 .

[31]  Kevin M. Passino,et al.  Adaptive control for a class of nonlinear systems with a time-varying structure , 2001, IEEE Trans. Autom. Control..

[32]  S. Yoshida,et al.  A fuzzy logic controller for a rigid disk drive , 1992, IEEE Control Systems.

[33]  Fathy Ismail,et al.  Active suppression of chatter in peripheral milling. Part II. Application of fuzzy control , 1996 .

[34]  Fathy Ismail,et al.  Active suppression of chatter in peripheral milling Part 1. A statistical indicator to evaluate the spindle speed modulation method , 1995 .

[35]  Gang Feng,et al.  Mamdani-type fuzzy controllers are universal fuzzy controllers , 2001, Fuzzy Sets Syst..

[36]  C. K. Lee,et al.  Rule-based adaptive control in a servomotor control system , 1994 .

[37]  Tong Shaocheng,et al.  Fuzzy adaptive output tracking control of nonlinear systems , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[38]  Hazem Nounou,et al.  Fuzzy model predictive control: techniques, stability issues, and examples , 1999, Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014).

[39]  K.M. Passino,et al.  Stable auto-tuning of the adaptation gain for indirect adaptive control , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[40]  G. Calcev,et al.  A passivity result for fuzzy control systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[41]  R. P. Jones,et al.  Fuzzy logic control of an automotive suspension system , 1995 .

[42]  Navarro López,et al.  Dissipativity and passivity-related properties in nonlinear discrete-time systems , 2002 .

[43]  Wen-Shyong Yu,et al.  Fuzzy model based adaptive control for a class of nonlinear systems , 2001, IEEE Trans. Fuzzy Syst..

[44]  Manuel Berenguel,et al.  Fuzzy logic control of a solar power plant , 1995, IEEE Trans. Fuzzy Syst..

[45]  K M Passino,et al.  Dynamically focused fuzzy learning control , 1996, IEEE Trans. Syst. Man Cybern. Part B.