A Classification of Unimodular Lattice Wiretap Codes in Small Dimensions

Lattice coding over a Gaussian wiretap channel, where an eavesdropper listens to transmissions between a transmitter and a legitimate receiver, is considered. A new lattice invariant called the secrecy gain is used as a code design criterion for wiretap lattice codes since it was shown to characterize the confusion that a chosen lattice can cause at the eavesdropper: the higher the secrecy gain of the lattice, the more confusion. In this paper, secrecy gains of extremal odd unimodular lattices as well as unimodular lattices in dimension n, 16 ≤ n ≤ 23, are computed, covering the four extremal odd unimodular lattices and all the 111 nonextremal unimodular lattices (both odd and even), providing thus a classification of the best wiretap lattice codes coming from unimodular lattices in dimension n, 8 <; n ≤ 23. Finally, to permit lattice encoding via Construction A, the corresponding error correction codes of the best lattices are determined.

[1]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[2]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[3]  Anne-Maria Ernvall-Hytönen,et al.  On a Conjecture by Belfiore and Solé on Some Lattices , 2011, IEEE Transactions on Information Theory.

[4]  A. J. Scholl INTRODUCTION TO ELLIPTIC CURVES AND MODULAR FORMS (Graduate Texts in Mathematics, 97) , 1986 .

[5]  Byung-Jae Kwak,et al.  LDPC Codes for the Gaussian Wiretap Channel , 2009, IEEE Transactions on Information Forensics and Security.

[6]  Frédérique E. Oggier,et al.  Secrecy gain of Gaussian wiretap codes from unimodular lattices , 2011, 2011 IEEE Information Theory Workshop.

[7]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[8]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[9]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[10]  Frédérique Oggier,et al.  Lattice Codes for the Gaussian Wiretap Channel , 2011, IWCC.

[11]  Camilla Hollanti,et al.  On the eavesdropper's correct decision in Gaussian and fading wiretap channels using lattice codes , 2011, 2011 IEEE Information Theory Workshop.

[12]  Shlomo Shamai,et al.  Information Theoretic Security , 2009, Found. Trends Commun. Inf. Theory.

[13]  Wolfgang Ebeling,et al.  Lattices and Codes: A Course Partially Based on Lectures by Friedrich Hirzebruch , 1994 .

[14]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Lab. Tech. J..

[15]  J. Barros,et al.  LDPC codes for the Gaussian wiretap channel , 2009 .

[16]  Patrick Solé,et al.  Unimodular lattices for the Gaussian Wiretap Channel , 2010, 2010 IEEE Information Theory Workshop.

[17]  H. Vincent Poor,et al.  Nested codes for secure transmission , 2008, 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications.

[18]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[19]  Frédérique E. Oggier,et al.  Secrecy gain: A wiretap lattice code design , 2010, 2010 International Symposium On Information Theory & Its Applications.