Polytypism in the ground state structure of the Lennard-Jonesium.

We present a systematic study of the stability of nineteen different periodic structures using the finite range Lennard-Jones potential model discussing the effects of pressure, potential truncation, cutoff distance and Lennard-Jones exponents. The structures considered are the hexagonal close packed (hcp), face centred cubic (fcc) and seventeen other polytype stacking sequences, such as dhcp and 9R. We found that at certain pressure and cutoff distance values, neither fcc nor hcp is the ground state structure as previously documented, but different polytypic sequences. This behaviour shows a strong dependence on the way the tail of the potential is truncated.

[1]  Roland Span,et al.  How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases? , 2017 .

[2]  Zhonghan Hu,et al.  The effect of electrostatic boundaries in molecular simulations: symmetry matters. , 2017, Physical chemistry chemical physics : PCCP.

[3]  Vanessa K. de Souza,et al.  The potential energy landscape for crystallisation of a Lennard-Jones fluid , 2016 .

[4]  Wentao Hu,et al.  Coexistence of multiple metastable polytypes in rhombohedral bismuth , 2015, Scientific Reports.

[5]  C. Salzmann,et al.  Extent of stacking disorder in diamond , 2015, 1505.02561.

[6]  J. C. Schön,et al.  Theoretical investigations of novel zinc oxide polytypes and in-depth study of their electronic properties , 2015 .

[7]  A. Travesset Phase diagram of power law and Lennard-Jones systems: crystal phases. , 2014, The Journal of chemical physics.

[8]  F. Bechstedt,et al.  Polytypism in ZnS, ZnSe, and ZnTe: First-principles study , 2014 .

[9]  P. Schwerdtfeger,et al.  Melting at high pressure: can first-principles computational chemistry challenge diamond-anvil cell experiments? , 2013, Angewandte Chemie.

[10]  Y. Vohra,et al.  High pressure phase transitions in the rare earth metal erbium to 151 GPa , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  R. Sadus,et al.  Effect of potential truncations and shifts on the solid-liquid phase coexistence of Lennard-Jones fluids. , 2010, The Journal of chemical physics.

[12]  G. P. Srivastava,et al.  Phonons and superconductivity in fcc and dhcp lanthanum , 2010 .

[13]  Jijun Zhao,et al.  First-principles studies of diamond polytypes , 2008 .

[14]  L. Dubrovinsky,et al.  Pure iron compressed and heated to extreme conditions. , 2007, Physical review letters.

[15]  Juan J de Pablo,et al.  Melting line of the Lennard-Jones system, infinite size, and full potential. , 2007, The Journal of chemical physics.

[16]  M. Mezouar,et al.  Structural transformation of compressed solid Ar: An x-ray diffraction study to 114 GPa , 2006 .

[17]  Ju Li,et al.  AtomEye: an efficient atomistic configuration viewer , 2003 .

[18]  M. Ross,et al.  Phase behavior of krypton and xenon to 50 GPa , 2002 .

[19]  A. Bruce,et al.  Lattice-switch Monte Carlo method: application to soft potentials. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Wei Shi,et al.  Histogram reweighting and finite-size scaling study of the Lennard–Jones fluids , 2001 .

[21]  M. A. Hoef,et al.  Free energy of the Lennard-Jones solid , 2000 .

[22]  J. Moriarty,et al.  dhcp as a possible new ϵ′ phase of iron at high pressures and temperatures , 1996 .

[23]  Athanassios Z. Panagiotopoulos,et al.  Molecular simulation of phase coexistence: Finite-size effects and determination of critical parameters for two- and three-dimensional Lennard-Jones fluids , 1994 .

[24]  B. W. V. D. Waal Can the Lennard-Jones solid be expected to be fcc ? , 1991 .

[25]  G. C. Trigunayat A survey of the phenomenon of polytypism in crystals , 1991 .

[26]  M. Hangyo,et al.  Raman intensity profiles and the stacking structure in SiC polytypes , 1991 .

[27]  Zha,et al.  Pressure-induced structural phase transitions in solid xenon. , 1987, Physical review letters.

[28]  E. Salje,et al.  In situ observation of the polytypic phase transition 2H-12R in PbI2: investigations of the thermodynamic structural and dielectric properties , 1987 .

[29]  G. D. Price,et al.  The Application of the ANNNI Model to Polytypic Behaviour , 1984 .

[30]  A. Overhauser Crystal Structure of Lithium at 4.2 K , 1984 .

[31]  H. Katahama,et al.  Estimation of dispersion curve of transverse acoustic phonons in CdI2 by Raman scattering , 1984 .

[32]  S. Papson,et al.  “Model” , 1981 .

[33]  Michael E. Fisher,et al.  Infinitely Many Commensurate Phases in a Simple Ising Model , 1980 .

[34]  I. Kiflawi,et al.  Double polytype regions in ZnS crystals , 1969 .

[35]  R. Elliott Phenomenological Discussion of Magnetic Ordering in the Heavy Rare-Earth Metals , 1961 .

[36]  T. Kihara,et al.  Crystal Structures and Intermolecular Forces of Rare Gases , 1952 .

[37]  B. Smit UvA-DARE ( Digital Academic Repository ) Phase diagrams of Lennard-Jones fluids , 1999 .

[38]  T. Idogaki,et al.  Ground-state phase diagram of A3NNI model with arbitrary spin quantum number , 1998 .

[39]  J. Yeomans The Theory and Application of Axial Ising Models , 1988 .

[40]  T. Page,et al.  Polytypic transformations in silicon carbide , 1983 .

[41]  W. Zachariasen,et al.  The Crystal Structure of Samarium Metal and of Samarium Monoxide1 , 1953 .