Analysis of Mixed Natural and Symbolic Input in Mathematical Dialogs

Discourse in formal domains, such as mathematics, is characterized by a mixture of telegraphic natural language and embedded (semi-)formal symbolic mathematical expressions. We present language phenomena observed in a corpus of dialogs with a simulated tutorial system for proving theorems as evidence for the need for deep syntactic and semantic analysis. We propose an approach to input understanding in this setting. Our goal is a uniform analysis of inputs of different degree of verbalization: ranging from symbolic alone to fully worded mathematical expressions.

[1]  Ivana Kruijff-Korbayová,et al.  Building a Dependency-Based Grammar for Parsing Informal Mathematical Discourse , 2004, TSD.

[2]  Petr Sgall,et al.  The Meaning Of The Sentence In Its Semantic And Pragmatic Aspects , 1986 .

[3]  Magdalena Wolska,et al.  Interpreting semi-formal utterances in dialogs about mathematical proofs , 2006, Data Knowl. Eng..

[4]  Johanna D. Moore What Makes Human Explanations Effective , 1993 .

[5]  Jason Baldridge,et al.  Coupling CCG and Hybrid Logic Dependency Semantics , 2002, ACL.

[6]  Ivana Kruijff-Korbayová,et al.  A Hybrid Logic Formalization of Information Structure Sensitive Discourse Interpretation , 2001, TSD.

[7]  Michael Glass Processing Language Input in the CIRCSIM-Tutor Intelligent Tutoring System , 2000 .

[8]  Ivana Kruijff-Korbayová,et al.  An Annotated Corpus of Tutorial Dialogs on Mathematical Theorem Proving , 2004, LREC.

[9]  Petr Sgall,et al.  A MANUAL FOR TECTOGRAMMATICAL TAGGING OF THE PRAGUE DEPENDENCY TREEBANK , 2000 .

[10]  Jörg H. Siekmann,et al.  A Wizard of Oz Experiment for Tutorial Dialogues in Mathematics , 2003 .

[11]  Jörg H. Siekmann,et al.  Tutorial dialogs on mathematical proofs , 2003, IJCAI 2003.

[12]  Arthur C. Graesser,et al.  Using Latent Semantic Analysis to Evaluate the Contributions of Students in AutoTutor , 2000, Interact. Learn. Environ..

[13]  Claus Zinn,et al.  Computational Framework For Understanding Mathematical Discourse , 2003, Log. J. IGPL.

[14]  Christoph Benzmüller,et al.  Assertion Application in Theorem Proving and Proof Planning , 2003, IJCAI.

[15]  Jason Baldridge,et al.  Multi-Modal Combinatory Categorial Grammar , 2003, EACL.

[16]  Magdalena Wolska,et al.  Lexical-semantic interpretation of language input in mathematical dialogs , 2004 .