Bandpass mismatch error for satellite CMB experiments I: estimating the spurious signal

Future Cosmic Microwave Background (CMB) satellite missions aim to use the $B$ mode polarization to measure the tensor-to-scalar ratio $r$ with a sensitivity of about $10^{-3}$. Achieving this goal will not only require sufficient detector array sensitivity but also unprecedented control of all systematic errors inherent to CMB polarization measurements. Since polarization measurements derive from differences between observations at different times and from different sensors, detector response mismatches introduce leakages from intensity to polarization and thus lead to a spurious $B$ mode signal. Because the expected primordial $B$ mode polarization signal is dwarfed by the known unpolarized intensity signal, such leakages could contribute substantially to the final error budget for measuring $r.$ Using simulations we estimate the magnitude and angular spectrum of the spurious $B$ mode signal resulting from bandpass mismatch between different detectors. It is assumed here that the detectors are calibrated, for example using the CMB dipole, so that their sensitivity to the primordial CMB signal has been perfectly matched. Consequently the mismatch in the frequency bandpass shape between detectors introduces difference in the relative calibration of galactic emission components. We simulate using a range of scanning patterns being considered for future satellite missions. We find that the spurious contribution to $r$ from reionization bump on large angular scales ($\ell < 10$) is $\approx 10^{-3}$ assuming large detector arrays and 20 percent of the sky masked. We show how the amplitude of the leakage depends on the angular coverage per pixels that results from the scan pattern.

[1]  Jacques Delabrouille,et al.  Optimal scan strategies for future CMB satellite experiments , 2016, 1604.02290.

[2]  C. B. Netterfield,et al.  Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy , 2011, 1101.2029.

[3]  P. A. R. Ade,et al.  MEASUREMENTS OF SUB-DEGREE B-MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2015, 1503.02315.

[4]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[5]  G. W. Pratt,et al.  Planck 2015 results Special feature Planck 2015 results VIII . High Frequency Instrument data processing : Calibration and maps , 2016 .

[6]  G. Hilton,et al.  LiteBIRD: lite satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation detection , 2016, Astronomical Telescopes + Instrumentation.

[7]  A. Kogut The Primordial Inflation Explorer , 2012 .

[8]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[9]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[10]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[11]  P. A. R. Ade,et al.  Exploring cosmic origins with CORE: Survey requirements and mission design , 2017, Journal of Cosmology and Astroparticle Physics.

[12]  N. Jarosik,et al.  Systematic effects from an ambient-temperature, continuously rotating half-wave plate. , 2016, The Review of scientific instruments.

[13]  J. R. Hull,et al.  A cosmic microwave background radiation polarimeter using superconducting bearings , 2003 .

[14]  Peter A. R. Ade,et al.  The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters , 2016, Journal of Cosmology and Astroparticle Physics.

[15]  William L. Holzapfel,et al.  LiteBIRD: a small satellite for the study of B-mode polarization and inflation from cosmic background radiation detection , 2012, Other Conferences.

[16]  E. M. Leitch,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR , 2014, 1403.2369.

[17]  G. W. Pratt,et al.  Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization , 2014, 1405.0874.

[18]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[19]  G. Hilton,et al.  LiteBIRD: Mission Overview and Focal Plane Layout , 2016 .

[20]  G. W. Pratt,et al.  Planck 2013 results. IX. HFI spectral response , 2013, 1303.5070.

[21]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization, and Systematic Error Limits , 2006, astro-ph/0603452.

[22]  C. A. Oxborrow,et al.  Planck 2013 results. XIII. Galactic CO emission , 2013, 1303.5073.

[23]  C. B. Netterfield,et al.  Planck early results - I. The Planck mission , 2011, 1101.2022.

[24]  F. Couchot,et al.  Optimised polarimeter configurations for measuring the Stokes parameters of the cosmic microwave background radiation , 1998, astro-ph/9807080.

[25]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[26]  E. Komatsu,et al.  Results from the Wilkinson Microwave Anisotropy Probe , 2014, 1404.5415.

[27]  R. B. Barreiro,et al.  Planck 2013 results , 2014 .

[28]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[29]  Shaul Hanany,et al.  Study of the Experimental Probe of Inflationary Cosmology (EPIC)-Intemediate Mission for NASA's Einstein Inflation Probe , 2009 .

[30]  William L. Holzapfel,et al.  Development of the Next Generation of Multi-chroic Antenna-Coupled Transition Edge Sensor Detectors for CMB Polarimetry , 2016 .

[31]  S. Masi,et al.  Exploring cosmic origins with CORE: Mitigation of systematic effects , 2017, 1707.04224.

[32]  A. G. Vieregg,et al.  BICEP2/KECK ARRAY V: MEASUREMENTS OF B-MODE POLARIZATION AT DEGREE ANGULAR SCALES AND 150 GHz BY THE KECK ARRAY , 2015, 1502.00643.

[33]  David N. Spergel,et al.  The Primordial Inflation Explorer (PIXIE) , 2014, Astronomical Telescopes and Instrumentation.

[34]  P. A. R. Ade,et al.  MEASUREMENTS OF E-MODE POLARIZATION AND TEMPERATURE-E-MODE CORRELATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA , 2014, 1411.1042.

[35]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[36]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.