Multiscale Modeling, Homogenization and Nonlocal Effects: Mathematical and Computational Issues

In this work, we review the connection between the subjects of homogenization and nonlocal modeling and discuss the relevant computational issues. By further exploring this connection, we hope to promote the cross fertilization of ideas from the different research fronts. We illustrate how homogenization may help characterizing the nature and the form of nonlocal interactions hypothesized in nonlocal models. We also offer some perspective on how studies of nonlocality may help the development of more effective numerical methods for homogenization.

[1]  Qiang Du,et al.  Nonlocal Models with Heterogeneous Localization and Their Application to Seamless Local-Nonlocal Coupling , 2019, Multiscale Model. Simul..

[2]  Robert Lipton,et al.  Multiscale Dynamics of Heterogeneous Media in the Peridynamic Formulation , 2012 .

[3]  Derek W. Robinson,et al.  The characterization of differential operators by locality: classical flows , 1986 .

[4]  Tomás Dohnal,et al.  Bloch-Wave Homogenization on Large Time Scales and Dispersive Effective Wave Equations , 2013, Multiscale Model. Simul..

[5]  Antoine Gloria,et al.  Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation , 2014, Found. Comput. Math..

[6]  Qiang Du,et al.  Trace Theorems for some Nonlocal Function Spaces with Heterogeneous Localization , 2017, SIAM J. Math. Anal..

[7]  Weiqi Chu,et al.  On the Asymptotic Behavior of the Kernel Function in the Generalized Langevin Equation: A One-Dimensional Lattice Model , 2017, 1708.04995.

[8]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[9]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[10]  Matej Praprotnik,et al.  Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat. , 2007, Soft matter.

[11]  B. Engquist,et al.  Wavelet-Based Numerical Homogenization , 1998 .

[12]  Wei H. Yang,et al.  On Waves in Composite Materials with Periodic Structure , 1973 .

[13]  Qiang Du,et al.  Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media , 2016 .

[14]  J. Slovák,et al.  Peetre Theorem for Nonlinear Operators , 1988 .

[15]  Philippe H. Geubelle,et al.  Handbook of Peridynamic Modeling , 2017 .

[16]  Qiang Du,et al.  Nonlocal Modeling, Analysis, and Computation , 2019 .

[17]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[18]  Olof Runborg,et al.  A time dependent approach for removing the cell boundary error in elliptic homogenization problems , 2016, J. Comput. Phys..

[19]  Luc Tartar,et al.  The General Theory of Homogenization: A Personalized Introduction , 2009 .

[20]  Jaak Peetre,et al.  Une caractérisation abstraite des opérateurs différentiels. , 1959 .

[21]  Jacob Fish,et al.  Non‐local dispersive model for wave propagation in heterogeneous media: one‐dimensional case , 2002 .

[22]  Qiang Du,et al.  Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains , 2016, Adv. Comput. Math..

[23]  Marta D'Elia,et al.  The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator , 2013, Comput. Math. Appl..

[24]  Xiaochuan Tian,et al.  Fast algorithm for computing nonlocal operators with finite interaction distance , 2019, Communications in Mathematical Sciences.

[25]  Yalchin Efendiev,et al.  Fast online generalized multiscale finite element method using constraint energy minimization , 2017, J. Comput. Phys..

[26]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[27]  Nicoletta Tchou,et al.  Fibered microstructures for some nonlocal Dirichlet forms , 2001 .

[28]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[29]  Giovanni Bussi,et al.  Langevin equation with colored noise for constant-temperature molecular dynamics simulations. , 2008, Physical review letters.

[30]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[31]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[32]  Zhongwei Shen,et al.  Uniform boundary controllability and homogenization of wave equations , 2019, Journal of the European Mathematical Society.

[33]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[34]  Sandia Report,et al.  Origin and Effect of Nonlocality in a Composite , 2014 .

[35]  Jiwei Zhang,et al.  Numerical Solution of a Two-Dimensional Nonlocal Wave Equation on Unbounded Domains , 2018, SIAM J. Sci. Comput..

[36]  A. Beurling,et al.  DIRICHLET SPACES. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Hou,et al.  Removing the Cell Resonance Error in the Multiscale Finite Element Method via a Petrov-Galerkin Formulation , 2004 .

[38]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[39]  C. Christov,et al.  Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Ralf Kornhuber,et al.  Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..

[41]  Graeme W. Milton,et al.  Non-local interactions in the homogenization closure of thermoelectric functionals , 2005 .

[42]  L. Tartar,et al.  Solutions oscillantes des équations de Carleman , 1981 .

[43]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[44]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[45]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[46]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[47]  Gilles A. Francfort,et al.  Correctors for the homogenization of the wave and heat equations , 1992 .

[48]  Panos Stinis,et al.  Renormalized Mori–Zwanzig-reduced models for systems without scale separation , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Julien Yvonnet,et al.  A consistent nonlocal scheme based on filters for the homogenization of heterogeneous linear materials with non-separated scales , 2014 .

[50]  Qiang Du Analysis of Coarse-Grained Lattice Models and Connections to Nonlocal Interactions , 2020, CSIAM Transactions on Applied Mathematics.

[51]  Umberto Mosco,et al.  Composite media and asymptotic dirichlet forms , 1994 .

[52]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[53]  Daniel Peterseim,et al.  Computation of Quasi-Local Effective Diffusion Tensors and Connections to the Mathematical Theory of Homogenization , 2016, Multiscale Model. Simul..

[54]  Qiang Du,et al.  Analysis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations , 2013, SIAM J. Numer. Anal..

[55]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[56]  Panagiotis E. Souganidis,et al.  Asymptotic and numerical homogenization , 2008, Acta Numerica.

[57]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[58]  Qiang Du,et al.  Multiscale analysis of linearized peridynamics , 2015 .

[59]  Isabelle Gruais,et al.  Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non-local effects. Memory effects , 2005 .

[60]  A J Chorin,et al.  Optimal prediction and the Mori-Zwanzig representation of irreversible processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Assyr Abdulle,et al.  A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media , 2016 .

[62]  Walter Kohn Analytic Properties of Bloch Waves and Wannier Functions , 1966 .

[63]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[64]  Yalchin Efendiev,et al.  Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods , 2016, J. Comput. Phys..

[65]  E. Vanden-Eijnden,et al.  Mori-Zwanzig formalism as a practical computational tool. , 2010, Faraday discussions.

[66]  Peter Kuchment,et al.  An overview of periodic elliptic operators , 2015, 1510.00971.

[67]  George Em Karniadakis,et al.  Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. , 2015, The Journal of chemical physics.

[68]  L. Hörmander The analysis of linear partial differential operators , 1990 .