Closed-loop aberration correction by use of a modal Zernike wave-front sensor.

We describe the practical implementation of a closed-loop adaptive-optics system incorporating a novel modal wave-front sensor. The sensor consists of a static binary-phase computer-generated holographic element, which generates a pattern of spots in a detector plane. Intensity differences between symmetric pairs of these spots give a direct measure of the Zernike mode amplitudes that are present in the input wave front. We use a ferroelectric liquid-crystal spatial light modulator in conjunction with a 4-f system and a spatial filter as a wave-front correction element. We present results showing a rapid increase in Strehl ratio and focal spot quality as the system corrects for deliberately introduced aberrations.