Interpretable Approximation of High-Dimensional Data

In this paper we apply the previously introduced approximation method based on the ANOVA (analysis of variance) decomposition and Grouped Transformations to synthetic and real data. The advantage of this method is the interpretability of the approximation, i.e., the ability to rank the importance of the attribute interactions or the variable couplings. Moreover, we are able to generate an attribute ranking to identify unimportant variables and reduce the dimensionality of the problem. We compare the method to other approaches on publicly available benchmark datasets.

[1]  FELIX BARTEL,et al.  Grouped Transformations in High-Dimensional Explainable ANOVA Approximation , 2020, ArXiv.

[2]  Markus Holtz,et al.  Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance , 2010, Lecture Notes in Computational Science and Engineering.

[3]  Klaus-Robert Müller,et al.  Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models , 2017, ArXiv.

[4]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[5]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[6]  Daniel Potts,et al.  Learning multivariate functions with low-dimensional structures using polynomial bases , 2019, ArXiv.

[7]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[8]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[9]  Henryk Wozniakowski,et al.  On decompositions of multivariate functions , 2009, Math. Comput..

[10]  A. Owen,et al.  Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .

[11]  Brian C. Ross Mutual Information between Discrete and Continuous Data Sets , 2014, PloS one.

[12]  C. F. Jeff Wu,et al.  Experiments , 2021, Wiley Series in Probability and Statistics.

[13]  Zhu Li,et al.  Towards a Unified Analysis of Random Fourier Features , 2018, ICML.

[14]  Art B. Owen,et al.  Effective Dimension of Some Weighted Pre-Sobolev Spaces with Dominating Mixed Partial Derivatives , 2017, SIAM J. Numer. Anal..

[15]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[16]  Jan Vybíral,et al.  Learning Functions of Few Arbitrary Linear Parameters in High Dimensions , 2010, Found. Comput. Math..

[17]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[18]  Kurt Hornik,et al.  The support vector machine under test , 2003, Neurocomputing.

[19]  Qiqi Wang,et al.  Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..

[20]  Frances Y. Kuo,et al.  Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients , 2018, Numerische Mathematik.

[21]  Martin J. Mohlenkamp,et al.  Multivariate Regression and Machine Learning with Sums of Separable Functions , 2009, SIAM J. Sci. Comput..

[22]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2001, Springer Series in Statistics.

[23]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[24]  Rahul Thakur,et al.  Exploratory Analysis of Machine Learning Techniques to predict Energy Efficiency in Buildings , 2020, 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO).

[25]  Gabriele Steidl,et al.  Numerical Fourier Analysis , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[26]  R. DeVore,et al.  Approximation of Functions of Few Variables in High Dimensions , 2011 .

[27]  Rachel A. Ward,et al.  A near-stationary subspace for ridge approximation , 2016, 1606.01929.

[28]  A. Owen,et al.  Estimating Mean Dimensionality of Analysis of Variance Decompositions , 2006 .

[29]  Tino Ullrich,et al.  L2-norm sampling discretization and recovery of functions from RKHS with finite trace , 2020, Sampling Theory, Signal Processing, and Data Analysis.

[30]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[31]  Daniel Potts,et al.  Approximation of High-Dimensional Periodic Functions with Fourier-Based Methods , 2021, SIAM J. Numer. Anal..

[32]  Wolfgang Dahmen,et al.  Fast high-dimensional approximation with sparse occupancy trees , 2011, J. Comput. Appl. Math..

[33]  Rong Jin,et al.  Efficient Kernel Clustering Using Random Fourier Features , 2012, 2012 IEEE 12th International Conference on Data Mining.

[34]  Ufuk Topcu,et al.  Function Approximation via Sparse Random Features , 2021, ArXiv.

[35]  Stefan Kunis,et al.  Using NFFT 3---A Software Library for Various Nonequispaced Fast Fourier Transforms , 2009, TOMS.

[36]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[37]  Konstantinos G. Margaritis,et al.  Multithreaded Local Learning Regularization Neural Networks for Regression Tasks , 2015, EANN.

[38]  Rong Jin,et al.  Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison , 2012, NIPS.

[39]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[40]  Ralf Klinkenberg,et al.  Data Classification: Algorithms and Applications , 2014 .

[41]  Frances Y. Kuo,et al.  Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation , 2016, Foundations of Computational Mathematics.

[42]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[43]  Chong Gu Smoothing Spline Anova Models , 2002 .