Hierarchical Bayesian Analysis of Correlated Zero‐inflated Count Data

This article presents two-component hierarchical Bayesian models which incorporate both overdispersion and excess zeros. The components may be resultants of some intervention (treatment) that changes the rare event generating process. The models are also expanded to take into account any heterogeneity that may exist in the data. Details of the model fitting, checking and selecting alternative models from a Bayesian perspective are also presented. The proposed methods are applied to count data on the assessment of an efficacy of pesticides in controlling the reproduction of whitefly. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[2]  M. V. van Iersel,et al.  Imidacloprid Applications by Subirrigation for Control of Silverleaf Whitefly (Homoptera: Aleyrodidae) on Poinsettia , 2000, Journal of economic entomology.

[3]  D. Hall Zero‐Inflated Poisson and Binomial Regression with Random Effects: A Case Study , 2000, Biometrics.

[4]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[5]  Shigeki Koda,et al.  Preventive Effects on Low Back Pain and Occupational Injuries by Providing the Participatory Occupational Safety and Health Program , 1999 .

[6]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[7]  R. Schall Estimation in generalized linear models with random effects , 1991 .

[8]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[9]  A. Agresti An introduction to categorical data analysis , 1997 .

[10]  C. Dean Testing for Overdispersion in Poisson and Binomial Regression Models , 1992 .

[11]  K. Yau,et al.  Zero‐Inflated Negative Binomial Mixed Regression Modeling of Over‐Dispersed Count Data with Extra Zeros , 2003 .

[12]  A. Cameron,et al.  Regression-based tests for overdispersion in the Poisson model☆ , 1990 .

[13]  G. Dagne Bayesian analysis of hierarchical poisson models with latent variables , 1999 .

[14]  Andy H. Lee,et al.  Analysis of zero-inflated Poisson data incorporating extent of exposure , 2001 .

[15]  Dankmar Böhning,et al.  The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology , 1999 .

[16]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[17]  J. Lawless Negative binomial and mixed Poisson regression , 1987 .

[18]  Atanu Biswas,et al.  A Bayesian analysis of zero-inflated generalized Poisson model , 2003, Comput. Stat. Data Anal..

[19]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[20]  Balgobin Nandram,et al.  Bayesian Analysis and Mapping of Mortality Rates for Chronic Obstructive Pulmonary Disease , 2000 .

[21]  C. A. McGilchrist,et al.  RANDOM THRESHOLD MODELS APPLIED TO INFLATED ZERO CLASS DATA , 1997 .

[22]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[23]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[24]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[25]  N. Breslow Further studies in the variability of pock counts. , 1990, Statistics in medicine.

[26]  W. Gilks Markov Chain Monte Carlo , 2005 .

[27]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[28]  L. Wasserman,et al.  Practical Bayesian Density Estimation Using Mixtures of Normals , 1997 .

[29]  Jeff Gill,et al.  Bayesian Methods : A Social and Behavioral Sciences Approach , 2002 .

[30]  D. Lindenmayer,et al.  Modelling the abundance of rare species: statistical models for counts with extra zeros , 1996 .

[31]  C. Hendricks Brown,et al.  Bayesian Hierarchical Modeling of Heterogeneity in Multiple Contingency Tables: An Application to Behavioral Observation Data , 2003 .