An approach for proving lower bounds: solution of Gilbert-Pollak's conjecture on Steiner ratio
暂无分享,去创建一个
[1] J. Hyam Rubinstein,et al. The Steiner ratio conjecture for six points , 1991, J. Comb. Theory A.
[2] David S. Johnson,et al. The Complexity of Computing Steiner Minimal Trees , 1977 .
[3] Doreen A. Thomas,et al. A variational approach to the Steiner network problem , 1991, Ann. Oper. Res..
[4] Marshall W. Bern. Two Probabilistic Results on Rectilinear Steiner Trees , 1986, STOC.
[5] Fan Chung,et al. A Lower Bound for the Steiner Tree Problem , 1978 .
[6] Ronald L. Graham,et al. A NEW BOUND FOR EUCLIDEAN STEINER MINIMAL TREES , 1985 .
[7] Ding-Zhu Du,et al. A Short Proof of a Result of Pollak on Steiner Minimal Trees , 1982, J. Comb. Theory, Ser. A.
[8] F. Hwang. On Steiner Minimal Trees with Rectilinear Distance , 1976 .
[9] Ding-Zhu Du,et al. A new bound for the steiner ratio , 1983 .
[10] H. Pollak,et al. Steiner Minimal Trees , 1968 .
[11] F. K. Hwang,et al. The Steiner Ratio Conjecture Is True for Five Points , 1985, J. Comb. Theory A.
[12] Henry O. Pollak,et al. Some Remarks on the Steiner Problem , 1978, J. Comb. Theory A.