Impact coverage of the success-index

We show mathematically that the success-index can be any of the following impact indices, dependent on the value of the threshold used in the definition of the success-index: Hirsch-index (h-index), g-index, generalized Wu- and Kosmulski-indices, the average.

[1]  Leo Egghe,et al.  The Hirsch index of a shifted Lotka function and its relation with the impact factor , 2012, J. Assoc. Inf. Sci. Technol..

[2]  Leo Egghe,et al.  Theory and practice of the shifted Lotka function , 2012, Scientometrics.

[3]  Fiorenzo Franceschini,et al.  An informetric model for the success-index , 2013, J. Informetrics.

[4]  L. Egghe Power Laws in the Information Production Process: Lotkaian Informetrics , 2005 .

[5]  Leo Egghe Mathematical characterizations of the Wu- and Hirsch-indices using two types of minimal increments. , 2013 .

[6]  M. Kosmulski A new Hirsch-type index saves time and works equally well as the original h-index , 2009 .

[7]  R. Rousseau,et al.  The R- and AR-indices: Complementing the h-index , 2007 .

[8]  Leo Egghe,et al.  Characterizations of the generalized Wu- and Kosmulski-indices in Lotkaian systems , 2011, J. Informetrics.

[9]  Ludo Waltman,et al.  The inconsistency of the h-index , 2011, J. Assoc. Inf. Sci. Technol..

[10]  J. E. Hirsch,et al.  An index to quantify an individual's scientific research output , 2005, Proc. Natl. Acad. Sci. USA.

[11]  Qiang Wu,et al.  The w-index: A measure to assess scientific impact by focusing on widely cited papers , 2010 .

[12]  L. Egghe,et al.  Theory and practise of the g-index , 2006, Scientometrics.

[13]  Leo Egghe A mathematical characterization of the Hirsch-index by means of minimal increments , 2013, J. Informetrics.

[14]  Leo Egghe,et al.  An informetric model for the Hirsch-index , 2006, Scientometrics.