Discharge plasmas generated by piezoelectric transformers and their applications

The characteristics of discharge plasma generated by piezoelectric transformers (PTs) and the practical applications of PT-based plasma reactors are reviewed in this paper. PTs of Pb(Zr · Ti)O3 generate high voltage by the piezoelectric effect, which can cause excitation and ionization of atoms and molecules, resulting in the generation of discharge plasma. When a narrow gap exists between the PT surface and a dielectric layer having a metal back electrode, dielectric barrier discharge (DBD) occurs at atmospheric pressure and above. The mechanical vibration of the PT and the resultant surface potential, which relate to electro-mechanical energy conversion by the piezoelectric effect, are investigated using a laser Doppler vibrometer and probe method, respectively. The characteristics of DBD are examined based on light patterns detected by the intensified charge coupled device camera, and the fundamental parameters of the filamentary discharge are determined. PT-generated DBD is shown to be applicable for ozone generation and as excimer lamps, and high-power operation is demonstrated using a parallel-driven hexad plasma reactor.

[1]  K. Teranishi,et al.  Dielectric barrier discharge generated by piezoelectric transformer in atmospheric pressure , 2005, IEEE Transactions on Plasma Science.

[2]  K. Teranishi,et al.  Luminous Phenomenon of Silent Discharge Using a Piezoelectric Transformer , 2001 .

[3]  U. Kogelschatz,et al.  Application of excimer incoherent-UV sources as a new tool in photochemistry: photodegradation of chlorinated dibenzodioxins in solution and adsorbed on aqueous pulp sludge , 1994 .

[4]  K. Schoenbach,et al.  Self-organization in cathode boundary layer microdischarges , 2004 .

[5]  U. Kogelschatz Atmospheric-pressure plasma technology , 2004 .

[6]  N V Denisova,et al.  Two-view tomography , 2000 .

[7]  K. V. Kozlov,et al.  Axial and radial development of microdischarges of barrier discharges in N2/O2 mixtures at atmospheric pressure , 2005 .

[8]  I. Koga Radio‐Frequency Vibrations of Rectangular AT‐Cut Quartz Plates , 1963 .

[9]  Jack Chen,et al.  Independently addressable subarrays of silicon microdischarge devices: Electrical characteristics of large (30×30) arrays and excitation of a phosphor , 2001 .

[10]  K. Teranishi,et al.  Dynamic behavior of light emissions generated by piezoelectric transformers , 2002 .

[11]  Akinori Oda,et al.  Estimation of the light output power and efficiency of Xe barrier discharge excimer lamps using a one-dimensional fluid model for various voltage waveforms , 2000 .

[12]  Michael Hirth,et al.  Ozone synthesis from oxygen in dielectric barrier discharges , 1987 .

[13]  K. Teranishi,et al.  A Novel Generation Method of Dielectric Barrier Discharge and Ozone Production Using a Piezoelectric Transformer , 2004 .

[14]  M. Tanaka,et al.  Mechanism of ozone generation in air-fed ozonisers , 1979 .

[15]  Shuhai Liu,et al.  Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps , 2003 .

[16]  Susumu Suzuki,et al.  Investigation of Ozone Loss Rate Influenced by the Surface Material of a Discharge Chamber , 2004 .

[17]  Susumu Suzuki,et al.  Variation of Ozone Reflection Coefficient at a Metal Surface with its Gradual Oxidation , 2005 .

[18]  B. Vojak,et al.  Radio frequency (10–23 MHz)-assisted excitation of a microdischarge with a piezoelectric transformer , 2004 .

[19]  U. Kogelschatz,et al.  Filamentary, patterned, and diffuse barrier discharges , 2002 .

[20]  Toshiya Watanabe,et al.  Ozone generation of bipolar-type ceramic ozonizer module with semiconductor ceramic discharge electrode , 1993 .

[21]  J. Eden,et al.  Arrays of nonequilibrium plasmas confined to microcavities: an emerging frontier in plasma science and its applications , 2006 .

[22]  Ulrich Kogelschatz,et al.  UV excimer radiation from dielectric-barrier discharges , 1988 .

[23]  A. Kaminski,et al.  Diffusion and Electrical Activation After a Rapid Thermal Annealing of an As and B-Co-Implanted Polysilicon Layer , 1997 .

[24]  William A. Tiller,et al.  Plasma bubble domains: A magnetic bubble analog , 1982 .

[25]  K. Teranishi,et al.  Luminescence from Fluorescent Material Excited by Piezoelectric Transformer , 2002 .

[26]  K. Hirose,et al.  Basic Performance of VUV Exposure Systems Using Head-on Type Ar2* and Kr2* DBD Excimer Lamps. , 2002 .

[27]  裕二 沖田,et al.  コンパクト1 kg/h共面放電オゾナイザの開発 , 2003 .

[28]  K. Teranishi,et al.  Observation of light emissions around a piezoelectric transformer in various gases , 2002 .

[29]  K. Teranishi,et al.  Absolute Measurement of Surface Potential and Discharge Power Distributions for Piezoelectric Transformer-Based Plasma Reactor , 2005 .

[30]  K. Teranishi,et al.  Glow discharge around piezoelectric transformer operated under higher-order vibration modes , 2005, IEEE Transactions on Plasma Science.

[31]  A. Oda,et al.  Modeling of multifilaments formation in dielectric barrier discharge excimer lamp , 2005, IEEE Transactions on Plasma Science.

[32]  K. Yasuoka,et al.  Effects of Polarization Reversal and Surface Conditions on the Ferroelectric Electron Emission , 1997 .

[33]  K. V. Kozlov,et al.  Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy , 2005 .