Paracoherent Answer Set Semantics meets Argumentation Frameworks

In the last years, abstract argumentation has met with great success in AI, since it has served to capture several non-monotonic logics for AI. Relations between argumentation framework (AF) semantics and logic programming ones are investigating more and more. In particular, great attention has been given to the well-known stable extensions of an AF, that are closely related to the answer sets of a logic program. However, if a framework admits a small incoherent part, no stable extension can be provided. To overcome this shortcoming, two semantics generalizing stable extensions have been studied, namely semi-stable and stage. In this paper, we show that another perspective is possible on incoherent AFs, called paracoherent extensions, as they have a counterpart in paracoherent answer set semantics. We compare this perspective with semi-stable and stage semantics, by showing that computational costs remain unchanged, and moreover an interesting symmetric behaviour is maintained. Under consideration for acceptance in TPLP.

[1]  Teodor C. Przymusinski Three-Valued Nonmonotonic Formalisms and Semantics of Logic Programs , 1991, Artif. Intell..

[2]  Luís Moniz Pereira,et al.  An encompassing framework for Paraconsistent Logic Programs , 2005, J. Appl. Log..

[3]  Paolo Mancarella,et al.  Computing ideal sceptical argumentation , 2007, Artif. Intell..

[4]  Stefan Woltran,et al.  The cf2 argumentation semantics revisited , 2013, J. Log. Comput..

[5]  Francesca Toni,et al.  On the responsibility for undecisiveness in preferred and stable labellings in abstract argumentation , 2018, Artif. Intell..

[6]  Pietro Baroni,et al.  On principle-based evaluation of extension-based argumentation semantics , 2007, Artif. Intell..

[7]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[8]  Ofer Arieli,et al.  On the acceptance of loops in argumentation frameworks , 2016, J. Log. Comput..

[9]  Trevor J. M. Bench-Capon Dilemmas and paradoxes: cycles in argumentation frameworks , 2016, J. Log. Comput..

[10]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[11]  Wolfgang Faber,et al.  Externally Supported Models for Efficient Computation of Paracoherent Answer Sets , 2018, AAAI.

[12]  Joohyung Lee,et al.  Loop Formulas for Disjunctive Logic Programs , 2003, ICLP.

[13]  Guillermo Ricardo Simari,et al.  Argumentation in Artificial Intelligence , 2009 .

[14]  Michael Wooldridge,et al.  Complexity of Abstract Argumentation , 2009, Argumentation in Artificial Intelligence.

[15]  Michael Gelfond,et al.  Logic Programs with Consistency-Restoring Rules , 2003 .

[16]  Dirk Vermeir,et al.  Robust Semantics for Argumentation Frameworks , 1999, J. Log. Comput..

[17]  Miroslaw Truszczynski,et al.  Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation , 2015, Lecture Notes in Computer Science.

[18]  Marcos Cramer,et al.  Technical report of "Empirical Study on Human Evaluation of Complex Argumentation Frameworks" , 2019, ArXiv.

[19]  Pietro Baroni,et al.  On the resolution-based family of abstract argumentation semantics and its grounded instance , 2011, Artif. Intell..

[20]  Thomas Linsbichler,et al.  Introducing the Second International Competition on Computational Models of Argumentation , 2016, SAFA@COMMA.

[21]  Thomas Linsbichler,et al.  Verifiability of Argumentation Semantics , 2016, COMMA.

[22]  Hannes Strass Approximating operators and semantics for abstract dialectical frameworks , 2013, Artif. Intell..

[23]  Dov M. Gabbay,et al.  Complete Extensions in Argumentation Coincide with 3-Valued Stable Models in Logic Programming , 2009, Stud Logica.

[24]  Pietro Baroni,et al.  SCC-recursiveness: a general schema for argumentation semantics , 2005, Artif. Intell..

[25]  John L. Pollock,et al.  The Logical Foundations of Goal-Regression Planning in Autonomous Agents , 1998, Artif. Intell..

[26]  Carlo Zaniolo,et al.  Partial Models and Three-Valued Models in Logic Programs with Negation , 1991, LPNMR.

[27]  Luís Moniz Pereira,et al.  Approved Models for Normal Logic Programs , 2007, LPAR.

[28]  Yuliya Lierler,et al.  On elementary loops of logic programs , 2010, Theory and Practice of Logic Programming.

[29]  Bart Verheij,et al.  Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages , 1999 .

[30]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[31]  Henry Prakken,et al.  A dialectical model of assessing conflicting arguments in legal reasoning , 1996, Artificial Intelligence and Law.

[32]  Fangzhen Lin,et al.  On Odd and Even Cycles in Normal Logic Programs , 2004, AAAI.

[33]  Martin Caminada,et al.  Computational Complexity of Semi-stable Semantics in Abstract Argumentation Frameworks , 2008, JELIA.

[34]  Mauricio Osorio,et al.  Logical Weak Completions of Paraconsistent Logics , 2008, J. Log. Comput..

[35]  Francesco Ricca,et al.  Better Paracoherent Answer Sets with Less Resources , 2019, Theory and Practice of Logic Programming.

[36]  Stefania Costantini,et al.  Normal forms for answer sets programming , 2005, Theory Pract. Log. Program..

[37]  Luís Moniz Pereira,et al.  Revised Stable Models - A Semantics for Logic Programs , 2005, EPIA.

[38]  Thomas Eiter,et al.  Paracoherent Answer Set Programming , 2010, KR.

[39]  Timo Soininen,et al.  Extending and implementing the stable model semantics , 2000, Artif. Intell..

[40]  Wolfgang Dvorák,et al.  Stage semantics and the SCC-recursive schema for argumentation semantics , 2016, J. Log. Comput..

[41]  Jia-Huai You,et al.  A Three-Valued Semantics for Deductive Databases and Logic Programs , 1994, J. Comput. Syst. Sci..

[42]  Dov M. Gabbay,et al.  The handling of loops in argumentation networks , 2016, J. Log. Comput..

[43]  Dietmar Seipel,et al.  Partial Evidential Stable Models for Disjunctive Deductive Databases , 1997, LPKR.

[44]  L. S. Shapley,et al.  College Admissions and the Stability of Marriage , 2013, Am. Math. Mon..

[45]  Teodor C. Przymusinski Stable semantics for disjunctive programs , 1991, New Generation Computing.

[46]  Thomas Eiter,et al.  Semi-equilibrium models for paracoherent answer set programs , 2016, Artif. Intell..

[47]  Chiaki Sakama,et al.  Paraconsistent Stable Semantics for Extended Disjunctive Programs , 1995, J. Log. Comput..

[48]  Simon Parsons,et al.  Arguments, Dialogue, and Negotiation , 2000, ECAI.

[49]  Danny De Schreye,et al.  Answer Set Planning , 1999 .

[50]  Guillermo Ricardo Simari,et al.  Beyond admissibility: accepting cycles in argumentation with game protocols for cogency criteria , 2014, J. Log. Comput..

[51]  Stefan Woltran,et al.  Complexity of semi-stable and stage semantics in argumentation frameworks , 2010, Inf. Process. Lett..

[52]  Sebastian Rudolph,et al.  What Is a Reasonable Argumentation Semantics? , 2015, Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation.

[53]  Martin Wigbertus Antonius Caminada Comparing Two Unique Extension Semantics for Formal Argumentation : Ideal and Eager , 2007 .

[54]  Dov M. Gabbay,et al.  Introduction to the special issue on Loops in Argumentation , 2016, J. Log. Comput..

[55]  Martin Caminada,et al.  On the equivalence between logic programming semantics and argumentation semantics , 2015, Int. J. Approx. Reason..

[56]  Bart Verheij,et al.  Artificial argument assistants for defeasible argumentation , 2003, Artif. Intell..

[57]  Paul E. Dunne,et al.  Semi-stable semantics , 2006, J. Log. Comput..

[58]  Miroslaw Truszczynski,et al.  Answer set programming at a glance , 2011, Commun. ACM.

[59]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[60]  Thomas Eiter,et al.  On the partial semantics for disjunctive deductive databases , 2004, Annals of Mathematics and Artificial Intelligence.

[61]  Thomas Linsbichler,et al.  Summary Report of the Second International Competition on Computational Models of Argumentation , 2018, AI Mag..