Mixed constraint preconditioning in computational contact mechanics

Contact mechanics can be addressed numerically by finite elements using either a penalty formulation or the Lagrange multipliers. The penalty approach leads to a linearized symmetric positive definite system which can prove severely ill-conditioned, with the iterative solution to large 3D problems requiring expensive preconditioners to accelerate, or even to allow for, convergence. In the present paper a mixed constraint preconditioner (MCP) is developed and implemented for the iterative solution of contact problems based on the penalty approach. A theoretical bound for the eigenspectrum of the preconditioned matrix is provided depending on the user-specified parameters that control the preconditioner fill-in. The performance of MCP combined with the preconditioned conjugate gradient is studied in two real 3D test cases describing the geomechanics of faulted porous media and compared to a well-established preconditioner such as the incomplete Cholesky decomposition ILLT with optimal fill-in. Numerical results show that typically MCP outperforms ILLT especially in the most challenging problems where very large penalty parameters must be used. Finally, a modification aimed at simplifying the MCP implementation and increasing its robustness is developed and experimented with, showing that the modified MCP can be viewed as an efficient and viable alternative to both MCP and ILLT, especially in problems where the size of the contact surfaces is large with respect to the global domain.

[1]  C. Farhat,et al.  A numerically scalable dual-primal substructuring method for the solution of contact problems––part I: the frictionless case , 2004 .

[2]  Z. Dostál On preconditioning and penalized matrices , 1999 .

[3]  M. B. Reed,et al.  ROBUST PRECONDITIONERS FOR LINEAR ELASTICITY FEM ANALYSES , 1997 .

[4]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[5]  P. Forsyth,et al.  Preconditioning methods for very ill‐conditioned three‐dimensional linear elasticity problems , 1999 .

[6]  Owe Axelsson,et al.  Eigenvalue estimates for preconditioned saddle point matrices , 2006, Numer. Linear Algebra Appl..

[7]  Kok-Kwang Phoon,et al.  A modified Jacobi preconditioner for solving ill‐conditioned Biot's consolidation equations using symmetric quasi‐minimal residual method , 2001 .

[8]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[9]  Luca Bergamaschi,et al.  Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations , 2007 .

[10]  Johannes K. Kraus,et al.  Algebraic multilevel preconditioning of finite element matrices using local Schur complements , 2006, Numer. Linear Algebra Appl..

[11]  Carlo Janna,et al.  Numerical modelling of regional faults in land subsidence prediction above gas/oil reservoirs , 2008 .

[12]  Luca Bergamaschi,et al.  Erratum to: Inexact constraint preconditioners for linear systems arising in interior point methods , 2011, Comput. Optim. Appl..

[13]  M. Neytcheva,et al.  Numerical simulations of glacial rebound using preconditioned iterative solution methods , 2005 .

[14]  K. Toh,et al.  Block preconditioners for symmetric indefinite linear systems , 2004 .

[15]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[16]  Michele Benzi,et al.  Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..

[17]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[18]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[19]  Luca Bergamaschi,et al.  Mixed Constraint Preconditioners for the iterative solution of FE coupled consolidation equations , 2008, J. Comput. Phys..

[20]  Y. Saad,et al.  Iterative solution of linear systems in the 20th century , 2000 .

[21]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[22]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[23]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[24]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[25]  Robert Beauwens,et al.  Problem-dependent preconditioners for iterative solvers in FE elastostatics , 1999 .

[26]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[27]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[28]  Charles E. Augarde,et al.  Element‐based preconditioners for elasto‐plastic problems in geotechnical engineering , 2007 .

[29]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[30]  P. Wriggers,et al.  A superlinear convergent augmented Lagrangian procedure for contact problems , 1999 .

[31]  G. Gambolati,et al.  Direct, partitioned and projected solution to finite element consolidation models , 2002 .

[32]  L. Luksan,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non‐linear programming problems , 1998 .

[33]  P. Forsyth,et al.  Preconditioned conjugate gradient methods for three-dimensional linear elasticity , 1994 .

[34]  Z. Dostál,et al.  Solution of contact problems by FETI domain decomposition with natural coarse space projections , 2000 .

[35]  C. Durazzi,et al.  Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems , 2003, Numer. Linear Algebra Appl..

[36]  Zdene caron,et al.  Theoretically Supported Scalable FETI for Numerical Solution of Variational Inequalities , 2007 .

[37]  Edmond Chow,et al.  Crout Versions of ILU for General Sparse Matrices , 2003, SIAM J. Sci. Comput..

[38]  Isam Shahrour,et al.  Use of sparse iterative methods for the resolution of three‐dimensional soil/structure interaction problems , 1999 .

[39]  Carlo Janna,et al.  A comparison of projective and direct solvers for finite elements in elastostatics , 2009, Adv. Eng. Softw..

[40]  Giuseppe Gambolati,et al.  Numerical performance of projection methods in finite element consolidation models , 2001 .

[41]  H. Elman,et al.  Efficient preconditioning of the linearized Navier-Stokes , 1999 .