RADIO DETECTION OF RADIO-QUIET GALAXIES

We investigate the radio emission of ∼185,000 quiescent (optically unclassifiable) galaxies selected from the Sloan Digital Sky Survey (SDSS). By median-stacking Faint Images of the Radio Sky at Twenty Centimeter (FIRST) cutouts centered on the optically-selected sources, we are able to reach flux densities down to the 10s of μJy. The quiescent galaxy sample is composed of two subgroups inhabiting vastly different regimes: those targeted for the SDSS MAIN galaxy sample (∼55%) and those targeted for the Luminous Red Galaxy (LRG) sample (∼45%). To investigate the star formation of these quiescent galaxies, we calibrate a radio to star-formation rate (SFR) conversion using a third sample of star-forming (SF) galaxies. We confirm a tight power-law dependence for the SF sample, where L1.4GHz ∼ (SFR)1.37. Comparing this SFR-indicator with indicators in the optical and UV, we derive conflicting SFR estimates for the MAIN sample quiescent galaxies. These radio-derived SFRs intersect those calculated using the 4000 Å break (D4000) around an SFR of 1 M☉ yr−1 and agree to within a factor of 3 over the range of SFRs. However, we find that the radio-derived SFRs are too high relative to the SFRs estimated for similar populations of galaxies using analysis of UV emission, implying either contamination of the radio by Active Galactic Nuclei (AGNs) or incomplete dust modeling. If AGN activity is dominant in these galaxies, then a relation between AGN radio luminosity and galaxy mass is required to explain the observed trends. For the LRGs, on the other hand, we find the radio luminosity to be relatively high (compared to the SF galaxies) and independent of SFR as derived from D4000, indicating that an AGN component dominates their radio emission. AGN-based radio emission often implies the existence of radio jets, providing evidence of a mechanism for low-level feedback in these quiescent LRGs.

[1]  J. Dunlop,et al.  On the evolution of clustering of 24-μm-selected galaxies , 2007, 0710.3136.

[2]  K. Schawinski,et al.  Observational evidence for AGN feedback in early-type galaxies , 2007, 0709.3015.

[3]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[4]  R. Becker,et al.  Star Formation in Low Radio Luminosity Active Galactic Nuclei from the Sloan Digital Sky Survey , 2007, 0704.2074.

[5]  I. Smail,et al.  Extending the infrared radio correlation , 2007, astro-ph/0701602.

[6]  R. Becker,et al.  Signals from the Noise: Image Stacking for Quasars in the FIRST Survey , 2006, astro-ph/0607335.

[7]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[8]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[9]  J. Newman,et al.  On the Origin of [O II] Emission in Red-Sequence and Poststarburst Galaxies , 2005, astro-ph/0512446.

[10]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[11]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[12]  A. Szalay,et al.  Systematics of the Ultraviolet Rising Flux in a GALEX/SDSS Sample of Early-Type Galaxies , 2004, astro-ph/0411356.

[13]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[14]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[15]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[16]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[17]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[18]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[19]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[20]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[21]  R. Chornock,et al.  “Hidden” Seyfert 2 Galaxies and the X-Ray Background , 2002, astro-ph/0210047.

[22]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[23]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[24]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[25]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[26]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[27]  J. Richard Gott,et al.  Median Statistics, H0, and the Accelerating Universe , 2000, astro-ph/0006103.

[28]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[29]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[30]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.

[31]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[32]  B. Mobasher,et al.  Star Formation Rates in Faint Radio Galaxies , 1998, astro-ph/9805327.

[33]  C. Jackson,et al.  Dual-population radio source unification , 1997 .

[34]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[35]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[36]  N. Duric,et al.  New results on the radio-far-infrared relation for galaxies , 1992 .

[37]  Robert C. Kennicutt,et al.  The Integrated spectra of nearby galaxies: General properties and emission line spectra , 1992 .

[38]  R. Kron,et al.  Sub-millijansky 1.4 GHz source counts and multicolor studies of weak radio galaxy populations , 1985 .

[39]  J. J. Condon Cosmological evolution of radio sources found at 1.4 GHz , 1984 .

[40]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[41]  J. Cohen H$alpha$ emission from the disks of spiral galaxies , 1976 .

[42]  Martin Harwit,et al.  Infrared galaxies - Evolutionary stages of massive star formation , 1975 .

[43]  F. Low,et al.  Far-infrared observations of galactic nuclei. , 1973 .

[44]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[45]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[46]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[47]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .