A mm-Wave Segmented Power Mixer

The segmented power-mixer array based mm-wave power generation architecture is demonstrated to be an energy-efficient technique for generating high-speed nonconstant envelope modulations. High output power levels are achieved by efficiently combining power from several power mixers using an area efficient dual-primary distributed active transformer. The segmented scheme leads to back-off efficiency improvements while simultaneously providing direct envelope modulation eliminating the need for high-speed high-efficiency supply modulators. The power mixer is implemented in a 32-nm silicon-on-insulator CMOS process and provides a peak output power of 19.1 dBm at 51 GHz with a drain efficiency of 14.2% and a peak power-added efficiency of 10.1%. High-speed constant (binary phase-shift keying, quadrature phase-shift keying), as well as nonconstant envelope modulations ( m-amplitude shift keying, quadrature amplitude modulation) show the versatility of the architecture towards spectrally efficient modulation schemes. Reliability against segment breakdown over long periods of time at 30% higher supply voltages has also been demonstrated.

[1]  S.T. Nicolson,et al.  Methodology for Simultaneous Noise and Impedance Matching in W-Band LNAs , 2006, 2006 IEEE Compound Semiconductor Integrated Circuit Symposium.

[2]  Kenichi Okada,et al.  A 60GHz 16Gb/s 16QAM low-power direct-conversion transceiver using capacitive cross-coupling neutralization in 65 nm CMOS , 2011, IEEE Asian Solid-State Circuits Conference 2011.

[3]  Yi Zhao,et al.  Compact transformer power combiners for millimeter-wave wireless applications , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[4]  Ali M. Niknejad,et al.  A digitally modulated mm-Wave cartesian beamforming transmitter with quadrature spatial combining , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[5]  Christophe Garnier,et al.  A Single-Chip WCDMA Envelope Reconstruction LDMOS PA with 130MHz Switched-Mode Power Supply , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[6]  Win Chaivipas,et al.  A 60-GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver for IEEE802.15.3c , 2011, IEEE Journal of Solid-State Circuits.

[7]  Gabriel M. Rebeiz,et al.  A 2-Bit, 24 dBm, Millimeter-Wave SOI CMOS Power-DAC Cell for Watt-Level High-Efficiency, Fully Digital m-ary QAM Transmitters , 2013, IEEE Journal of Solid-State Circuits.

[8]  P. Reynaert,et al.  A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE , 2005, IEEE Journal of Solid-State Circuits.

[9]  M.-C.F. Chang,et al.  60 GHz CMOS Amplifiers Using Transformer-Coupling and Artificial Dielectric Differential Transmission Lines for Compact Design , 2009, IEEE Journal of Solid-State Circuits.

[10]  Sorin P. Voinigescu,et al.  A 19 dBm, 15 Gbaud, 9 bit SOI CMOS Power-DAC Cell for High-Order QAM W-Band Transmitters , 2014, IEEE Journal of Solid-State Circuits.

[11]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[12]  Bumman Kim,et al.  A single-chip linear CMOS power amplifier for 2.4 GHz WLAN , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[13]  A. Tomkins,et al.  A Zero-IF 60 GHz 65 nm CMOS Transceiver With Direct BPSK Modulation Demonstrating up to 6 Gb/s Data Rates Over a 2 m Wireless Link , 2009, IEEE Journal of Solid-State Circuits.

[14]  Kaushik Sengupta,et al.  A 19.1dBm segmented power-mixer based multi-Gbps mm-Wave transmitter in 32nm SOI CMOS , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[15]  U.R. Pfeiffer,et al.  A 23-dBm 60-GHz Distributed Active Transformer in a Silicon Process Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[16]  데이비드 로스 그린버그,et al.  Electromigration-compliant high performance fet layout , 2009 .

[17]  Harish Krishnaswamy,et al.  High-Power High-Efficiency Class-E-Like Stacked mmWave PAs in SOI and Bulk CMOS: Theory and Implementation , 2014, IEEE Transactions on Microwave Theory and Techniques.

[18]  Kenichi Okada,et al.  A 60 GHz 16 Gb / s 16 QAM Low-Power Direct-Conversion Transceiver Using Capacitive Cross-Coupling Neutralization in 65 nm CMOS , 2011 .

[19]  Ali Hajimiri,et al.  An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement , 2009, IEEE Journal of Solid-State Circuits.

[20]  Ali M. Niknejad,et al.  A single-chip highly linear 2.4GHz 30dBm power amplifier in 90nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[21]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[22]  P. Reynaert,et al.  Design Considerations for 60 GHz Transformer-Coupled CMOS Power Amplifiers , 2009, IEEE Journal of Solid-State Circuits.