A viscoelastic cohesive/friction coupled model for delamination analysis of composite laminates

Abstract This paper develops a viscoelastic cohesive/frictional contact coupled model for delamination analysis of composite laminates. First, a viscoelastic cohesive model is developed, in which the regular cohesive tractions are expressed as the modified Xu and Needleman’s exponential traction-separation function and the viscous cohesive tractions are described by the Schapery-type hereditary integral function. The Prony series is used to expand the dimensionless cohesive stiffness. The recursive algorithm is employed to solve the viscous cohesive traction. Second, the regular tangential cohesive traction is further coupled with the frictional stress to deal with the contact problem, where the cohesive/frictional contact coupled algorithm is also developed. Third, the explicit finite element formulation is presented to solve the cohesive traction for finite-thickness interface. Finally, numerical results in terms of the single-leg bending (SLB) composite specimens with frictionless mixed-mode delamination and the end notched flexure (ENF) composite specimens with frictional shear delamination under low strain rate loading are used to validate the developed model by studying the effects of the cohesive strength, friction, load rate and mesh sizes on the load responses and the delamination growth behaviors.

[1]  Jean-François Molinari,et al.  A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials , 2005 .

[2]  M. Ortiz,et al.  Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates , 2002 .

[3]  Joakim Schön,et al.  Coefficient of friction of composite delamination surfaces , 2000 .

[4]  A. Rosakis,et al.  Experimental observations of intersonic crack growth in asymmetrically loaded unidirectional composite plates , 2001 .

[5]  Pedro P. Camanho,et al.  A damage model for the simulation of delamination in advanced composites under variable-mode loading , 2006 .

[6]  Giuseppe Giambanco,et al.  Mixed mode failure analysis of bonded joints with rate‐dependent interface models , 2006 .

[7]  S. Govindjee,et al.  Numerical study of geometric constraint and cohesive parameters in steady-state viscoelastic crack growth , 2006 .

[8]  Michael R Wisnom,et al.  A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens , 2007 .

[9]  Ning Hu,et al.  Finite element simulation of delamination growth in composite materials using LS-DYNA , 2009 .

[10]  P. F. Liu,et al.  A nonlinear cohesive model for mixed-mode delamination of composite laminates , 2013 .

[11]  Carlos G. Davila,et al.  Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities , 2004 .

[12]  M. Cocu,et al.  A consistent model coupling adhesion, friction, and unilateral contact , 1999 .

[13]  Xiongqi Peng,et al.  A nonlocal finite element model for progressive failure analysis of composite laminates , 2016 .

[14]  E. Sacco,et al.  A thermodynamically consistent derivation of a frictional-damage cohesive-zone model with different mode I and mode II fracture energies , 2015 .

[15]  David H. Allen,et al.  A micromechanical model for a viscoelastic cohesive zone , 2001 .

[16]  A. Pasta,et al.  Frictional effect in mode II delamination: Experimental test and numerical simulation , 2013 .

[17]  G. Nguyen,et al.  A thermodynamics-based cohesive model for interface debonding and friction , 2014 .

[18]  Zdeněk P. Bažant,et al.  Cohesive Crack with Rate-Dependent Opening and Viscoelasticity: I. Mathematical Model and Scaling , 1997 .

[19]  Guillaume Parry,et al.  Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis , 2014 .

[20]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[21]  Jinyang Zheng,et al.  Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression , 2015 .

[22]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[23]  Javier Segurado,et al.  A new three-dimensional interface finite element to simulate fracture in composites , 2004 .

[24]  F. Parrinello,et al.  Cohesive–frictional interface constitutive model , 2009 .

[25]  M. Geers,et al.  On the development of a 3D cohesive zone element in the presence of large deformations , 2008 .

[26]  D. Coker,et al.  Intersonic delamination in curved thick composite laminates under quasi-static loading , 2015 .

[27]  Rami Haj-Ali,et al.  Numerical finite element formulation of the Schapery non‐linear viscoelastic material model , 2004 .

[28]  Marco Musto,et al.  A novel rate-dependent cohesive-zone model combining damage and visco-elasticity , 2013 .

[29]  Zhenmin Zou,et al.  Rate-dependent elastic and elasto-plastic cohesive zone models for dynamic crack propagation , 2016 .

[30]  Y. Mai,et al.  A cohesive plastic and damage zone model for dynamic crack growth in rate-dependent materials , 2003 .

[31]  Alberto Corigliano,et al.  Rate-dependent interface models: formulation and numerical applications , 2001 .

[32]  G. Marannano,et al.  A thermodynamically consistent cohesive-frictional interface model for mixed mode delamination , 2016 .

[33]  A. Waas,et al.  The influence of adhesive constitutive parameters in cohesive zone finite element models of adhesively bonded joints , 2009 .

[34]  Marco Paggi,et al.  Nonlinear fracture dynamics of laminates with finite thickness adhesives , 2015 .

[35]  Xiongqi Peng,et al.  Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact , 2016 .

[36]  D. Coker,et al.  Modeling of dynamic crack propagation using rate dependent interface model , 2016 .

[37]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[38]  John W. Gillespie,et al.  On the Analysis and Design of the End Notched Flexure (ENF) Specimen for Mode II Testing , 1986 .

[39]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[40]  Qingda Yang,et al.  Cohesive models for damage evolution in laminated composites , 2005 .

[41]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[42]  N. Petrinic,et al.  Strain rate dependence of mode II delamination resistance in through thickness reinforced laminated composites , 2017 .

[43]  P. Geubelle,et al.  Analysis of a rate-dependent cohesive model for dynamic crack propagation , 2002 .

[44]  De Xie,et al.  Discrete cohesive zone model for mixed-mode fracture using finite element analysis , 2006 .

[45]  M. Kaliske,et al.  A thermomechanically coupled viscoelastic cohesive zone model at large deformation , 2013 .

[46]  J. Molinari,et al.  A cohesive element model for mixed mode loading with frictional contact capability , 2013 .

[47]  Z. Gu,et al.  A nonlinear cohesive/friction coupled model for shear induced delamination of adhesive composite joint , 2016, International Journal of Fracture.

[48]  A. Szekrényes,et al.  Over-leg Bending Test for Mixed-mode I/II Interlaminar Fracture in Composite Laminates , 2007 .

[49]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[50]  Richard Schapery,et al.  Nonlinear viscoelastic solids , 2000 .

[51]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[52]  Glaucio H. Paulino,et al.  A unified potential-based cohesive model of mixed-mode fracture , 2009 .

[53]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[54]  B. Liao,et al.  Finite element analysis of dynamic progressive failure properties of GLARE hybrid laminates under low-velocity impact , 2018 .

[55]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[56]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .