Existence of positive solutions for nonlocal p ⁢ ( x ) p(x) -Kirchhoff elliptic systems

Abstract In this article, we discuss the existence of positive solutions by using sub-super solutions concepts of the following p ⁢ ( x ) {p(x)} -Kirchhoff system: { - M ⁢ ( I 0 ⁢ ( u ) ) ⁢ △ p ⁢ ( x ) ⁢ u = λ p ⁢ ( x ) ⁢ [ λ 1 ⁢ f ⁢ ( v ) + μ 1 ⁢ h ⁢ ( u ) ] in ⁢ Ω , - M ⁢ ( I 0 ⁢ ( v ) ) ⁢ △ p ⁢ ( x ) ⁢ v = λ p ⁢ ( x ) ⁢ [ λ 2 ⁢ g ⁢ ( u ) + μ 2 ⁢ τ ⁢ ( v ) ] in ⁢ Ω , u = v = 0 on ⁢ ∂ ⁡ Ω , \left\{\begin{aligned} &\displaystyle{-}M(I_{0}(u))\triangle_{p(x)}u=\lambda^{% p(x)}[\lambda_{1}f(v)+\mu_{1}h(u)]&&\displaystyle\text{in }\Omega,\\ &\displaystyle{-}M(I_{0}(v))\triangle_{p(x)}v=\lambda^{p(x)}[\lambda_{2}g(u)+% \mu_{2}\tau(v)]&&\displaystyle\text{in }\Omega,\\ &\displaystyle u=v=0&&\displaystyle\text{on }\partial\Omega,\end{aligned}\right. where Ω ⊂ ℝ N {\Omega\subset\mathbb{R}^{N}} is a bounded smooth domain with C 2 {C^{2}} boundary ∂ ⁡ Ω {\partial\Omega} , △ p ⁢ ( x ) ⁢ u = div ⁡ ( | ∇ ⁡ u | p ⁢ ( x ) - 2 ⁢ ∇ ⁡ u ) {\triangle_{p(x)}u=\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)} , p ⁢ ( x ) ∈ C 1 ⁢ ( Ω ¯ ) {p(x)\in C^{1}(\overline{\Omega})} , with 1 < p ⁢ ( x ) {1<p(x)} , is a function satisfying 1 < p - = inf Ω ⁡ p ⁢ ( x ) ≤ p + = sup Ω ⁡ p ⁢ ( x ) < ∞ {1<p^{-}=\inf_{\Omega}p(x)\leq p^{+}=\sup_{\Omega}p(x)<\infty} , λ, λ 1 {\lambda_{1}} , λ 2 {\lambda_{2}} , μ 1 {\mu_{1}} and μ 2 {\mu_{2}} are positive parameters, I 0 ⁢ ( u ) = ∫ Ω 1 p ⁢ ( x ) ⁢ | ∇ ⁡ u | p ⁢ ( x ) ⁢ 𝑑 x {I_{0}(u)=\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}\,dx} , and M ⁢ ( t ) {M(t)} is a continuous function.

[1]  Nguyen Thanh Chung,et al.  Existence of positive solutions for variable exponent elliptic systems with multiple parameters , 2015 .

[2]  Nguyen Thanh Chung,et al.  Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing nonlinearities , 2013 .

[3]  Guowei Dai Three solutions for a nonlocal Dirichlet boundary value problem involving the p(x)-Laplacian , 2013 .

[4]  Xiaoling Han,et al.  On the sub-supersolution method for p(x)-Kirchhoff type equations , 2012 .

[5]  Qihu Zhang,et al.  Existence of positive solutions for variable exponent elliptic systems , 2012 .

[6]  Chun-Lei Tang,et al.  Existence and multiplicity of solutions for Kirchhoff type equations , 2011 .

[7]  Ahmed Bensedik,et al.  On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity , 2009, Math. Comput. Model..

[8]  Biagio Ricceri,et al.  On an elliptic Kirchhoff-type problem depending on two parameters , 2008, J. Glob. Optim..

[9]  Qihu Zhang,et al.  Existence of positive solutions for a class of p(x)-Laplacian systems ✩ , 2007 .

[10]  Qihu Zhang Existence of positive solutions for elliptic systems with nonstandard p(x)-growth conditions via sub-supersolution method , 2007 .

[11]  Xianling Fan,et al.  On the sub-supersolution method for p(x)-Laplacian equations , 2007 .

[12]  Xianling Fan,et al.  Global C1,α regularity for variable exponent elliptic equations in divergence form , 2007 .

[13]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[14]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[15]  To Fu Ma,et al.  Remarks on an elliptic equation of Kirchhoff type , 2005 .

[16]  Caisheng Chen,et al.  On positive weak solutions for a class of quasilinear elliptic systems , 2005 .

[17]  Giuseppe Mingione,et al.  Regularity Results for Stationary Electro-Rheological Fluids , 2002 .

[18]  Xianling Fan,et al.  On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .

[19]  Dun Zhao,et al.  The quasi-minimizer of integral functionals with m ( x ) growth conditions , 2000 .

[20]  Dun Zhao,et al.  A class of De Giorgi type and Hölder continuity , 1999 .

[21]  Michel Chipot,et al.  Some remarks on non local elliptic and parabolic problems , 1997 .

[22]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[23]  Lan Yong Existence of positive solutions for Kirchhoff type equation , 2015 .

[24]  N. T. Chung Multiplicity results for a class of $p(x)$-Kirchhoff type equations with combined nonlinearities , 2012 .

[25]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .