Closure of the Strongly Magnetized Electron Fluid Equations in the Adiabatic Regime

We derive closure relations for a plasma fluid model, issued from the BGK equation for electrons in a strong magnetic field. Our scaling of the BGK equation leads in the asymptotic limit $\varepsilon \to 0$ towards the adiabatic electron regime, where $\varepsilon$ embodies the scaled Larmor radius as well as a low Mach number. In this regime the electron density adjusts instantaneously to perturbations of the electric potential via a Boltzmann relation, i.e., $n=ce^{\phi/T}$. The fluid closures are obtained in the small-$\varepsilon$ regime from a Hilbert ansatz of the distribution function; the ensuing hierarchy of kinetic equations is solved exactly up to the desired order. Different closures emerge depending on the importance of the ratio $\nu/\omega_c$ between the electron-electron collision frequency $\nu$ and the cyclotron frequency $\omega_c$. Anisotropy in the transport coefficients is found when $\nu/\omega_c \ll 1$. Moreover, bringing into play the obtained closures, we present a drift-fluid model valid for $\varepsilon \ll 1$ and identify the correct limit model as $\varepsilon \to 0$. The limit model can be used to avoid the crude approximations $c=const.$ and $T=const.$ in the electron Boltzmann relation, frequently used for plasma simulations.

[1]  Francis F. Chen Plasma Physics and Controlled Fusion , 1984 .

[2]  Yang Chen,et al.  A gyrokinetic ion zero electron inertia fluid electron model for turbulence simulations , 2001 .

[3]  Emmanuel Frénod,et al.  Homogenization of the Vlasov Equation and of the Vlasov - Poisson System with a Strong External Magnetic Field , 2010, ArXiv.

[4]  G Knorr,et al.  The adiabatic electron plasma and its equation of state , 1970 .

[5]  Pierre Degond,et al.  Asymptotic Continuum Models for Plasmas and Disparate Mass Gaseous Binary Mixtures , 2007 .

[6]  S. I. Braginskii Transport Processes in a Plasma , 1965 .

[7]  Mihai Bostan,et al.  Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation , 2014 .

[8]  J. Pain Plasma Physics , 1968, Nature.

[9]  Irene M. Gamba,et al.  Impact of Strong Magnetic Fields on Collision Mechanism for Transport of Charged Particles , 2012, 1205.2327.

[10]  François Golse,et al.  THE VLASOV-POISSON SYSTEM WITH STRONG MAGNETIC FIELD , 1999 .

[11]  Dixon T. K. Kwok,et al.  A hybrid Boltzmann electrons and PIC ions model for simulating transient state of partially ionized plasma , 2008, J. Comput. Phys..

[12]  André Rogister,et al.  Revisited neoclassical transport theory for steep, collisional plasma edge profiles , 1994 .

[13]  Naoufel Ben Abdallah,et al.  Diffusion and guiding center approximation for particle transport in strong magnetic fields , 2008, 1005.2890.

[14]  Lorenzo Pareschi,et al.  Modeling and Computational Methods for Kinetic Equations , 2012 .

[15]  Mihai Bostan,et al.  The Vlasov-Maxwell System with Strong Initial Magnetic Field: Guiding-Center Approximation , 2007, Multiscale Model. Simul..

[16]  Peter J. Catto,et al.  A drift ordered short mean free path description for magnetized plasma allowing strong spatial anisotropy , 2003 .

[17]  C. Birdsall,et al.  Nonlinear hybrid Boltzmann-particle-in-cell acceleration algorithm , 2000 .

[18]  Eric Sonnendrücker,et al.  LONG TIME BEHAVIOR OF THE TWO-DIMENSIONAL VLASOV EQUATION WITH A STRONG EXTERNAL MAGNETIC FIELD , 2000 .

[19]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[20]  C. Bourdelle,et al.  Global simulations of ion turbulence with magnetic shear reversal , 2001 .

[21]  Mihai Bostan,et al.  Finite Larmor radius approximation for collisional magnetic confinement. Part I: The linear Boltzmann equation , 2014 .

[22]  A. Mikhailovskii,et al.  Transport equations and gradient instabilities in a high pressure collisional plasma , 1971 .

[23]  Pierre Degond,et al.  Transport coefficients of plasmas and disparate mass binary gases , 1996 .

[24]  M. Bostan,et al.  Collisional models for strongly magnetized plasmas. The gyrokinetic Fokker-Planck equation , 2010 .

[25]  J. Huba NRL: Plasma Formulary , 2004 .

[26]  R. Hazeltine,et al.  Rotation of a toroidally confined, collisional plasma , 1974 .

[27]  Mihai Bostan,et al.  The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime , 2009, Asymptot. Anal..