On McDiarmid's concentration inequality
暂无分享,去创建一个
[1] Igor Vajda,et al. Note on discrimination information and variation (Corresp.) , 1970, IEEE Trans. Inf. Theory.
[2] I. Pinelis. Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above , 2005, math/0512301.
[3] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[4] V. Bentkus. On measure concentration for separately Lipschitz functions in product spaces , 2007 .
[5] J. Kurchan,et al. In and out of equilibrium , 2005, Nature.
[6] M. Habib. Probabilistic methods for algorithmic discrete mathematics , 1998 .
[7] C. McDiarmid. Concentration , 1862, The Dental register.
[8] I. Pinelis. On normal domination of (super)martingales , 2005, math/0512382.
[9] Houman Owhadi,et al. Optimal Uncertainty Quantification , 2010, SIAM Rev..
[10] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[11] F. Topsøe. BOUNDS FOR ENTROPY AND DIVERGENCE FOR DISTRIBUTIONS OVER A TWO-ELEMENT SET , 2001 .
[12] Lawrence K. Saul,et al. Large Deviation Methods for Approximate Probabilistic Inference , 1998, UAI.
[13] Emmanuel Rio,et al. Local invariance principles and their application to density estimation , 1994 .
[14] E. Rio,et al. Inégalités de concentration pour les processus empiriques de classes de parties , 2001 .
[15] M. Sion. On general minimax theorems , 1958 .
[16] Gustavo L. Gilardoni. An Improvement on Vajda’s Inequality , 2008 .
[17] O. Krafft. A note on exponential bounds for binomial probabilities , 1969 .
[18] V. Bentkus. On Hoeffding’s inequalities , 2004, math/0410159.