Active control of flexible marine risers

In this article, active control of flexible marine riser angle and the reduction of forced vibration under a time-varying distributed load are considered using boundary control approach. A torque actuator is introduced in the upper riser package and a boundary control law is designed to generate the required signal for riser angle control and vibration reduction with guaranteed closed-loop stability. Exponential stability can be achieved under the free vibration condition. The proposed control is simple, implementable with actual instrumentation, and is independent of system parameters, thus possessing stability robustness to variations in parameters. The design is based on the partial differential equations of the system, thus avoiding some drawbacks associated with the traditional truncated-model-based design approaches. Numerical simulations are provided to verify the effectiveness of the approach presented.

[1]  Robert H. Scanlan,et al.  Flow-Induced Vibration , 1977 .

[2]  S. M. Shahruz,et al.  SUPPRESSION OF VIBRATION IN STRETCHED STRINGS BY THE BOUNDARY CONTROL , 1997 .

[3]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[4]  Yung-Hsiang Chen,et al.  General drag-force linearization for nonlinear analysis of marine risers , 1989 .

[5]  M. Köhler,et al.  Pointwise maximum principle for convex optimal control problems with mixed control-phase variable inequality constraints , 1980 .

[6]  Frank L. Lewis,et al.  Robust control for the tracking of robot motion , 1990 .

[7]  Frank L. Lewis,et al.  Flexible-link robot arm control by a feedback linearization/singular perturbation approach , 1994, J. Field Robotics.

[8]  Svein I. Sagatun,et al.  Exponential Stabilization of a Transversely Vibrating Beam by Boundary Control Via Lyapunov’s Direct Method , 2001 .

[9]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[10]  Shuzhi Sam Ge,et al.  Adaptive neural control of uncertain MIMO nonlinear systems , 2004, IEEE Transactions on Neural Networks.

[11]  H. Goldstein,et al.  Classical Mechanics , 1951, Mathematical Gazette.

[12]  J. R. Fowler,et al.  Dynamic Analysis as an Aid to the Design of Marine Risers , 1978 .

[13]  R. Blevins,et al.  Flow-Induced Vibration , 1977 .

[14]  A. Bokaian,et al.  Natural frequencies of beams under tensile axial loads , 1990 .

[15]  M. Balas Active control of flexible systems , 1978 .

[16]  R. H. Cannon,et al.  Initial Experiments on the End-Point Control of a Flexible One-Link Robot , 1984 .

[17]  Michael P. Polis,et al.  An example on the effect of time delays in boundary feedback stabilization of wave equations , 1986 .

[18]  Julio Romano Meneghini,et al.  Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields , 2004 .

[19]  Subrata K. Chakrabarti,et al.  Review of riser analysis techniques , 1982 .

[20]  Bruno Siciliano,et al.  A Singular Perturbation Approach to Control of Lightweight Flexible Manipulators , 1988, Int. J. Robotics Res..

[21]  L. Meirovitch,et al.  On the problem of observation spillover in self-adjoint distributed-parameter systems , 1983 .

[22]  Shuzhi Sam Ge,et al.  Variable structure regulation of a flexible arm with a translational base , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[23]  M. H. Patel,et al.  Theory and model tests for the dynamic response of free hanging risers , 1987 .

[24]  Shuzhi Sam Ge,et al.  Adaptive Neural Network Control of Robotic Manipulators , 1999, World Scientific Series in Robotics and Intelligent Systems.

[25]  J. Kim Vandiver,et al.  THE LINEAR VIBRATION ANALYSIS OF MARINE RISERS USING THE WKB-BASED DYNAMIC STIFFNESS METHOD , 2002 .

[26]  Hiroyuki Iwamoto,et al.  Active boundary control of an Euler–Bernoulli beam for generating vibration-free state , 2007 .

[27]  Asgeir J. Sørensen,et al.  Optimal setpoint chasing in dynamic positioning of deep‐water drilling and intervention vessels , 2001 .

[28]  Raymond H. Plaut,et al.  Effect Of Axial Load On Forced Vibrations Of Beams , 1993 .

[29]  Sakdirat Kaewunruen,et al.  Nonlinear free vibrations of marine risers/pipes transporting fluid , 2005 .

[30]  Sen-Yung Lee,et al.  THE FORCED VIBRATION AND BOUNDARY CONTROL OF PRETWISTED TIMOSHENKO BEAMS WITH GENERAL TIME DEPENDENT ELASTIC BOUNDARY CONDITIONS , 2002 .

[31]  Darren M. Dawson,et al.  Lyapunov-Based Control of Mechanical Systems , 2000 .

[32]  Cassio T. Yamamoto,et al.  Numerical simulations of vortex-induced vibration on flexible cylinders , 2004 .

[33]  S. M. Shahruz,et al.  BOUNDARY CONTROL OF A NON-LINEAR STRING , 1996 .

[34]  G. K. Furnes ON MARINE RISER RESPONSES IN TIME- AND DEPTH-DEPENDENT FLOWS , 2000 .

[35]  C. Rahn,et al.  ACTIVE BOUNDARY CONTROL OF ELASTIC CABLES: THEORY AND EXPERIMENT , 1996 .

[36]  Juan B. V. Wanderley,et al.  Vortex induced loads on marine risers , 2005 .

[37]  Amr M. Baz,et al.  Boundary Control of Beams Using Active Constrained Layer Damping , 1997 .

[38]  Fumitoshi Matsuno,et al.  Modeling and feedback control of a flexible arm , 1985, J. Field Robotics.

[39]  Shuzhi Sam Ge,et al.  Variable structure control of a distributed‐parameter flexible beam , 2001 .

[40]  Rong-Fong Fung,et al.  Boundary Control of an Axially Moving String Via Lyapunov Method , 1999 .

[41]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .