Analysis of Randomized Adaptive Algorithms for Black-Box Continuous Constrained Optimization. (Analyse d'algorithmes stochastiques adaptatifs pour l'optimisation numérique boîte-noire avec contraintes)

We investigate various aspects of adaptive randomized (or stochastic) algorithms for both constrained and unconstrained black-box continuous optimization. The first part of this thesis focuses on step-size adaptation in unconstrained optimization. We first present a methodology for assessing efficiently a step-size adaptation mechanism that consists in testing a given algorithm on a minimal set of functions, each reflecting a particular difficulty that an efficient step-size adaptation algorithm should overcome. We then benchmark two step-size adaptation mechanisms on the well-known BBOB noiseless testbed and compare their performance to the one of the state-of-the-art evolution strategy (ES), CMA-ES, with cumulative step-size adaptation. In the second part of this thesis, we investigate linear convergence of a (1 + 1)-ES and a general step-size adaptive randomized algorithm on a linearly constrained optimization problem, where an adaptive augmented Lagrangian approach is used to handle the constraints. To that end, we extend the Markov chain approach used to analyze randomized algorithms for unconstrained optimization to the constrained case. We prove that when the augmented Lagrangian associated to the problem, centered at the optimum and the corresponding Lagrange multipliers, is positive homogeneous of degree 2, then for algorithms enjoying some invariance properties, there exists an underlying homogeneous Markov chain whose stability (typically positivity and Harris-recurrence) leads to linear convergence to both the optimum and the corresponding Lagrange multipliers. We deduce linear convergence under the aforementioned stability assumptions by applying a law of large numbers for Markov chains. We also present a general framework to design an augmented-Lagrangian-based adaptive randomized algorithm for constrained optimization, from an adaptive randomized algorithm for unconstrained optimization.

[1]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[2]  K. I. M. McKinnon,et al.  Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point , 1998, SIAM J. Optim..

[3]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[4]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[5]  Ivan Zelinka,et al.  ON STAGNATION OF THE DIFFERENTIAL EVOLUTION ALGORITHM , 2000 .

[6]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[7]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[8]  Carlos A. Coello Coello,et al.  Constrained Optimization via Multiobjective Evolutionary Algorithms , 2008, Multiobjective Problem Solving from Nature.

[9]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[10]  D. Gleich TRUST REGION METHODS , 2017 .

[11]  M. Powell Developments of NEWUOA for minimization without derivatives , 2008 .

[12]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[13]  A. Zhigljavsky Stochastic Global Optimization , 2008, International Encyclopedia of Statistical Science.

[14]  Anne Auger,et al.  How to Assess Step-Size Adaptation Mechanisms in Randomised Search , 2014, PPSN.

[15]  José Mario Martínez,et al.  Global minimization using an Augmented Lagrangian method with variable lower-level constraints , 2010, Math. Program..

[16]  Keith L. Downing,et al.  Introduction to Evolutionary Algorithms , 2006 .

[17]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  Chang Wook Ahn,et al.  On the practical genetic algorithms , 2005, GECCO '05.

[20]  Carlos A. Coello Coello,et al.  Constraint-handling techniques used with evolutionary algorithms , 2017, GECCO.

[21]  Anne Auger,et al.  COCO: a platform for comparing continuous optimizers in a black-box setting , 2016, Optim. Methods Softw..

[22]  Marc Schoenauer,et al.  Multidisciplinary Optimization in the Design of Future Space Launchers , 2013 .

[23]  Anne Auger,et al.  Evolution Strategies , 2018, Handbook of Computational Intelligence.

[24]  M. Hestenes Multiplier and gradient methods , 1969 .

[25]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[26]  Charles J. Geyer,et al.  Markov Chain Monte Carlo Lecture Notes , 2005 .

[27]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[28]  Martin Holena,et al.  A Generalized Markov-Chain Modelling Approach to (1, λ)-ES Linear Optimization , 2013, PPSN.

[29]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[30]  Stephen J. Wright,et al.  Primal-Dual Interior-Point Methods , 1997 .

[31]  O. SIAMJ.,et al.  ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .

[32]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[33]  Roger Fletcher,et al.  An exact penalty function for nonlinear programming with inequalities , 1973, Math. Program..

[34]  Nikolaus Hansen,et al.  CMA-ES with Two-Point Step-Size Adaptation , 2008, ArXiv.

[35]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[36]  José Mario Martínez,et al.  Practical augmented Lagrangian methods for constrained optimization , 2014, Fundamentals of algorithms.

[37]  Ralf Salomon,et al.  Evolutionary algorithms and gradient search: similarities and differences , 1998, IEEE Trans. Evol. Comput..

[38]  Anne Auger,et al.  Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..

[39]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[40]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[41]  Anne Auger,et al.  A median success rule for non-elitist evolution strategies: study of feasibility , 2013, GECCO '13.

[42]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[43]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[44]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[45]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[46]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[47]  Raymond Ros,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .

[48]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[49]  R. Fletcher Practical Methods of Optimization , 1988 .

[50]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[51]  Olivier François,et al.  Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties , 2003, Theor. Comput. Sci..

[52]  Rodolphe Le Riche,et al.  Dual Evolutionary Optimization , 2001, Artificial Evolution.

[53]  Ya-Xiang Yuan,et al.  Recent advances in trust region algorithms , 2015, Mathematical Programming.

[54]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[55]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[56]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[57]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[58]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[59]  Anne Auger,et al.  Cumulative Step-Size Adaptation on Linear Functions , 2012, PPSN.

[60]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[61]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[62]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[63]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[64]  Anne Auger,et al.  Verifiable Conditions for Irreducibility, Aperiodicity and T-chain Property of a General Markov Chain , 2015 .

[65]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[66]  M. Powell The BOBYQA algorithm for bound constrained optimization without derivatives , 2009 .

[67]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[68]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[69]  Kalyanmoy Deb,et al.  A genetic algorithm based augmented Lagrangian method for constrained optimization , 2012, Comput. Optim. Appl..

[70]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[71]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[72]  Min-Jea Tahk,et al.  Coevolutionary augmented Lagrangian methods for constrained optimization , 2000, IEEE Trans. Evol. Comput..

[73]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[74]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .