An End-to-End Signal Strength Model for Underwater Optical Communications

In this paper, we present a generic model of signal strength in underwater optical communications. The model includes light sources, detectors, amplifier and detector circuitry, optics, as well as a simple extinction model of the water channel. The end-to-end model provides insights into optimization approaches for underwater optical modems and enables relative pose estimation between underwater optical transmitters and receivers. We instantiate our model to the AquaOptical model by determining its parameters and verifying the model prediction in a suite of pool experiments.

[1]  Greg Baiden,et al.  Paving the way for a future underwater omni-directional wireless optical communication systems , 2009 .

[2]  Sermsak Jaruwatanadilok,et al.  Underwater Wireless Optical Communication Channel Modeling and Performance Evaluation using Vector Radiative Transfer Theory , 2008, IEEE Journal on Selected Areas in Communications.

[3]  J. Trumpf,et al.  Visible Spectrum Optical Communication and Distance Sensing for Underwater Applications , 2004 .

[4]  John F. Muth,et al.  A spatial diversity system to measure optical fading in an underwater communications channel , 2009, OCEANS 2009.

[5]  Carrick Detweiler,et al.  Using optical communication for remote underwater robot operation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  W. Marsden I and J , 2012 .

[7]  Shanthi Prince,et al.  Underwater Optical Wireless Channel Modeling Using Monte‐Carlo Method , 2011 .

[8]  J A Simpson,et al.  5 Mbps optical wireless communication with error correction coding for underwater sensor nodes , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[9]  Daniela Rus,et al.  BiDirectional optical communication with AquaOptical II , 2010, 2010 IEEE International Conference on Communication Systems.

[10]  J. Kirk,et al.  Estimation of the absorption and the scattering coefficients of natural waters by use of underwater irradiance measurements. , 1994, Applied optics.

[11]  Davide Anguita,et al.  Building an Underwater Wireless Sensor Network Based on Optical: Communication: Research Challenges and Current Results , 2009, 2009 Third International Conference on Sensor Technologies and Applications.

[12]  Marek Doniec,et al.  Autonomous, Localization-Free Underwater Data Muling Using Acoustic and Optical Communication , 2012, ISER.

[13]  Shlomi Arnon,et al.  Non-line-of-sight optical wireless sensor network operating in multiscattering channel. , 2006, Applied optics.

[14]  B. Cochenour,et al.  Effects of Multiple Scattering on the Implementation of an Underwater Wireless Optical Communications Link , 2006, OCEANS 2006.

[15]  Mohammad-Ali Khalighi,et al.  Channel modeling for underwater optical communication , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[16]  Carrick Detweiler,et al.  AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication , 2009, OCEANS 2009.

[17]  Y. Bissiri,et al.  High Bandwidth Optical Networking for Underwater Untethered TeleRobotic Operation , 2007, OCEANS 2007.

[18]  Giancarlo Parodi,et al.  VHDL modules and circuits for underwater optical wireless communication systems , 2010 .

[19]  Mark Alan Chancey,et al.  Short Range Underwater Optical Communication Links , 2005 .

[20]  Iuliu Vasilescu,et al.  Autonomous Modular Optical Underwater Robot (AMOUR) Design, Prototype and Feasibility Study , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[21]  Linda Mullen,et al.  Channel response measurements for diffuse non-line-of-sight (NLOS) optical communication links underwater , 2011, OCEANS'11 MTS/IEEE KONA.

[22]  Mingsong Chen,et al.  The Implementation of PPM in Underwater Laser Communication System , 2006, 2006 International Conference on Communications, Circuits and Systems.

[23]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[24]  Neil Genzlinger A. and Q , 2006 .

[25]  B. Cochenour,et al.  Phase Coherent Digital Communications for Wireless Optical Links in Turbid Underwater Environments , 2007, OCEANS 2007.

[26]  Michael Bass,et al.  Handbook of optics , 1995 .

[27]  William C. Cox,et al.  A 1 Mbps Underwater Communication System Using a 405 nm Laser Diode and Photomultiplier Tube , 2008 .

[28]  F. Hanson,et al.  High bandwidth underwater optical communication. , 2008, Applied optics.

[29]  N Farr,et al.  Optical communication system expands CORK seafloor observatory's bandwidth , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[30]  I. Bankman,et al.  Underwater optical communications systems. Part 2: basic design considerations , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[32]  J A Simpson,et al.  A MEMS blue/green retroreflecting modulator for underwater optical communications , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[33]  C. Pontbriand,et al.  An integrated, underwater optical /acoustic communications system , 2010, OCEANS'10 IEEE SYDNEY.

[34]  John F. Muth,et al.  Underwater optical communication using software defined radio over LED and laser based links , 2011, 2011 - MILCOM 2011 Military Communications Conference.

[35]  Linda Mullen,et al.  Optical propagation in the underwater environment , 2009, Defense + Commercial Sensing.

[36]  Peter I. Corke,et al.  Data collection, storage, and retrieval with an underwater sensor network , 2005, SenSys '05.

[37]  Masakazu Takahata,et al.  An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish , 2004, Journal of Neuroscience Methods.

[38]  Philip Lacovara,et al.  High-Bandwidth Underwater Communications , 2008 .

[39]  L. Freitag,et al.  Optical Modem Technology for Seafloor Observatories , 2005, OCEANS 2006.

[40]  R. Camilli,et al.  Bright blue: Advanced technologies for marine environmental monitoring and offshore energy , 2010, OCEANS'10 IEEE SYDNEY.

[41]  A. Stockman,et al.  A luminous efficiency function, V*(lambda), for daylight adaptation. , 2005, Journal of vision.

[42]  Marco Lanzagorta Underwater Communications , 2012, Synthesis Lectures on Communications.

[43]  Heather Brundage,et al.  Designing a wireless underwater optical communication system , 2010 .

[44]  David V. Thiel,et al.  Low-cost short -range wireless optical FSK modem for swimmers feedback , 2011, 2011 IEEE SENSORS Proceedings.

[45]  Davide Anguita,et al.  Optical wireless underwater communication for AUV: Preliminary simulation and experimental results , 2011, OCEANS 2011 IEEE - Spain.

[46]  D Anguita,et al.  Optical wireless communication for underwater Wireless Sensor Networks: Hardware modules and circuits design and implementation , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[47]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[48]  Fred Moshary,et al.  Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization , 2006 .

[49]  Feng Lu,et al.  Low-cost medium-range optical underwater modem: short paper , 2009, WUWNet.

[50]  J.A. Simpson,et al.  An underwater optical communication system implementing Reed-Solomon channel coding , 2008, OCEANS 2008.

[51]  N. Farr,et al.  Diffuse high-bandwidth optical communications , 2008, OCEANS 2008.

[52]  Peter I. Corke,et al.  Data muling over underwater wireless sensor networks using an autonomous underwater vehicle , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..