Polarization dynamics and formation of polar nanoregions in relaxor ferroelectrics

Polarization dynamics and formation of polar nanoregions (PNR) in relaxor ferroelectrics is considered within a model of interacting short range polar clusters formed by off-center ions in highly polarizable materials. The model is applicable on the mesoscopic level and takes explicitly into account the distribution of cluster relaxation times and the existence of quenched random fields which control the size of PNR. Using self-consistent random field theory and continuous time random walk approximation, a relationship is established between the average polarization dynamics contributing to the low frequency dielectric response, and the local polarization dynamics determining NMR spin lattice relaxation time [Blinc et al., Phys. Rev. B 63, 024104 (2001); Cordero et al., ibid. 71, 094112 (2005)]. The lengthscale of PNR estimated from the obtained universal relationship between the parameters of the soft mode dispersion curve and the static dielectric permittivity is in agreement with the experiment [Vakhrushev et al., Physica B 156-157, 90 (1989)]. The predicted proportionality, between the intensity of diffuse neutron scattering from dynamic PNR and square of PNR correlation length, which has been recently a subject of controversy, is also in agreement with experiment by Vakhrushev et al. Therefore, we conclude that the model captures essential features of the static and dynamic behavior of relaxor ferroelectrics, and could be used for the characterization of new relaxor materials.

[1]  R. Pirc,et al.  Dynamics of relaxor ferroelectrics , 2000, cond-mat/0010022.

[2]  G. Burns,et al.  Ferroelectrics with a glassy polarization phase , 1990 .

[3]  Freezing of the extended state in the random local field theory of Ising spin glasses with long range interactions , 1996 .

[4]  S. Vakhrushev,et al.  Diffuse neutron scattering in relaxor ferroelectric PbMg1/3Nb2/3O3. , 2004, Physical chemistry chemical physics : PCCP.

[5]  L. Bursill,et al.  RANDOM-FIELD POTTS MODEL FOR THE POLAR DOMAINS OF LEAD MAGNESIUM NIOBATE AND LEAD SCANDIUM TANTALATE , 1996 .

[6]  N. Setter,et al.  Soft and central mode behaviour in PbMg1/3Nb2/3O3 relaxor ferroelectric , 2004, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  A. Bussmann-Holder,et al.  Relaxor ferroelectrics and intrinsic inhomogeneity , 2005 .

[8]  B. Toperverg,et al.  Neutron scattering from disordered perovskite-like crystals and glassy phenomena , 1989 .

[9]  M. Glinchuk,et al.  Dipole glass and ferroelectricity in random-site electric dipole systems , 1990 .

[10]  E. Colla,et al.  Low-frequency dielectric response of PbMg1/3Nb2/3O3 , 1992 .

[11]  Melvin Lax,et al.  Stochastic Transport in a Disordered Solid. I. Theory , 1973 .

[12]  B. Vugmeister Long range order in random-site dipole systems in a random field (KTaO3: Li, Na, Nb) , 1991 .

[13]  Westphal,et al.  Diffuse phase transitions and random-field-induced domain states of the "relaxor" ferroelectric PbMg1/3Nb2/3O3. , 1992, Physical review letters.

[14]  A. Khachaturyan,et al.  Dielectric properties of material with random off-center defects: Monte Carlo simulation of relaxor ferroelectrics , 2001 .

[15]  G. Burns,et al.  Crystalline ferroelectrics with glassy polarization behavior , 1983 .

[16]  R. Katiyar,et al.  Central peak in light scattering from the relaxor ferroelectric PbMg 1 / 3 Nb 2 / 3 O 3 , 1997 .

[17]  R. Birgeneau,et al.  Universal static and dynamic properties of the structural transition in Pb(Zn1/3Nb2/3)O-3 , 2003, cond-mat/0301132.

[18]  H. Rabitz,et al.  Kinetics of electric-field-induced ferroelectric phase transitions in relaxor ferroelectrics , 2001 .

[19]  G. Shirane,et al.  Neutron diffuse scattering from polar nanoregions in the relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2001, cond-mat/0109386.

[20]  R. Pirc,et al.  Glassy freezing in relaxor ferroelectric lead magnesium niobate , 1998 .

[21]  W. Kleemann RANDOM-FIELD INDUCED ANTIFERROMAGNETIC, FERROELECTRIC AND STRUCTURAL DOMAIN STATES , 1993 .

[22]  R. Pirc,et al.  207PbNMR study of the relaxor behavior inPbMg1/3Nb2/3O3 , 2000 .

[23]  Yoseph Imry,et al.  Random-Field Instability of the Ordered State of Continuous Symmetry , 1975 .

[24]  A. Aharony Absence of ferromagnetic long range order in random isotropic dipolar magnets and in similar systems , 1978 .

[25]  G. Burns,et al.  Soft phonons in a ferroelectric polarization glass system , 1986 .

[26]  R. Katiyar,et al.  Lattice dynamics inPbMg1∕3Nb2∕3O3 , 2004 .

[27]  W. Kleemann,et al.  Dynamics of nanoscale polar regions and critical behavior of the uniaxial relaxor Sr 0.61 Ba 0.39 Nb 2 O 6 :Co , 2005 .

[28]  George A. Samara,et al.  TOPICAL REVIEW: The relaxational properties of compositionally disordered ABO3 perovskites , 2003 .

[29]  Valentin Laguta,et al.  Field cooled and zero field cooled 207Pb NMR and the local structure of relaxor PbMg1/3Nb2/3O3. , 2003, Physical review letters.

[30]  Joseph Klafter,et al.  Derivation of the Continuous-Time Random-Walk Equation , 1980 .

[31]  A. Kania,et al.  Distribution of relaxation times in PMN single crystal , 2005 .

[32]  B. Halperin,et al.  Defects and the central peak near structural phase transitions , 1976 .

[33]  R. L. Prater,et al.  Raman scattering studies of the impurity-induced ferroelectric phase transition in KTa O 3 :Li , 1981 .

[34]  T. Schneider,et al.  Random-field instability of the ferromagnetic state , 1977 .

[35]  F. H. Dacol,et al.  Glassy polarization behavior in ferroelectric compounds Pb(Mg13Nb23)O3 and Pb(Zn13Nb23)O3 , 1983 .

[36]  B. Vugmeister Spatial and Spectral Spin Diffusion in Dilute Spin Systems , 1976 .

[37]  Cross,et al.  Deviation from Curie-Weiss behavior in relaxor ferroelectrics. , 1992, Physical review. B, Condensed matter.

[38]  D. Strauch,et al.  Inelastic neutron scattering study of the relaxor ferroelectric PbMg1/3Nb2/3O3 at high temperatures , 1999 .

[39]  G. Shirane,et al.  Neutron elastic diffuse scattering study ofPb(Mg1/3Nb2/3)O3 , 2003, cond-mat/0308170.

[40]  R. Birgeneau,et al.  Strong Influence of the Diffuse Component on the Lattice Dynamics in Pb(Mg1/3Nb2/3)O3 , 2004, cond-mat/0404086.

[41]  A. Tagantsev,et al.  Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics. , 1994, Physical review letters.

[42]  A. Rigamonti NMR-NQR studies of structural phase transitions , 1984 .

[43]  Tagantsev,et al.  Phenomenological model of dynamic nonlinear response of relaxor ferroelectrics , 2000, Physical review letters.

[44]  S. Gvasaliya,et al.  Disorder and relaxation mode in the lattice dynamics of thePbMg1/3Nb2/3O3relaxor ferroelectric , 2003, cond-mat/0311097.

[45]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[46]  R. Pirc,et al.  SPHERICAL RANDOM-BOND-RANDOM-FIELD MODEL OF RELAXOR FERROELECTRICS , 1999 .

[47]  Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. , 2004, Physical review letters.

[48]  I. M. Sokolov,et al.  Dynamics of annealed systems under external fields: CTRW and the fractional Fokker-Planck equations , 2001 .

[49]  H. Rabitz,et al.  Effect of local field fluctuations on orientational ordering in random-site dipole systems , 1997 .